
Notes on Answer Set Programming
CSC 791 Generative Methods for Game Design

Chris Martens

September 20, 2017

1 Introduction
Answer set programming, or ASP, is a technique based on logic programming that allows us to
define a generative space in abstract terms, then iteratively place constraints on that generative
space to whittle down the output to what we want.

For example, if we consider the problem of dungeon generation, first we specify all the possible
ways dungeons could be constructed. Then, we write a logical predicate that defines what it means
for the dungeon to be solvable. Then we can run an answer set solver to generate a set of dungeons
that are solvable.

The programming language that both the constructive rules and constraints are written in is
called AnsProlog, and today we are going to dip our toes into AnsProlog.

2 Setup
You will need the Clingo/Potassco answer set solver available here: http://potassco.sourceforge.
net/

3 Running Clingo
Edit your code in a file yourfile.lp, then run:

$ clingo -n 0 yourfile.lp

The -n flag gives Clingo a number of answer sets to generate; 0 tells it to generate all answer
sets.

To get one example of random output, use:

$ clingo -n 1 --rand-freq=1 yourfile.lp

But this won’t actually generate different output on each run unless you also change the random
seed:

$ clingo -n 1 --rand-freq=1 --seed=<SEED> yourfile.lp

For example, using ‘echo $RANDOM‘ as your seed will generate new output every time you run
the command.

4 Facts and Rules
AnsProlog is a style of Prolog, which means we define our program through relations, or logical
propositions. Simply by writing

p.
q.

1

http://potassco.sourceforge.net/
http://potassco.sourceforge.net/

We declare that p and q are true facts in the world.
What’s more interesting is that we can define how p and q are logically related to one another.

For instance, we can say that p implies q with the syntax:

q :- p.

This is a rule, or a clause, where q is the head and p is the body. The symbol :- is sometimes
referred to as the “neck” of the rule.

5 Answer Sets
Suppose our complete program is:

p.
q :- p.

Unlike in Prolog, we don’t have to issue a query in order for computation to happen. The
answer set solver instead produces all possible collections of facts that are consistent with what
we’ve said in the program.

So when we run Clingo on this program, we get a single answer set:

p q

This set represents all consequences that are derivable from the program. We can use this to
do neat recursive searching in a very concise way; for example, we can find all paths between two
nodes in a graph.

6 Example: Edges and Paths
Let’s say we have a directed graph as follows:

We can represent this graph using a collection of relations, or facts with arguments. The first
relation we’ll need is a unary (one-place) relation, or predicate, declaring that something is a node:

node(1..6).

This notation is syntactic sugar for the equivalent program

node(1). node(2). node(3). node(4). node(5). node(6).

The 2-place relation edge(X,Y) will represent a directed edge from X to Y. For example, all the
edges coming out of node 1 could be written:

2

edge(1, 2).
edge(1, 3).
edge(1, 4).

AnsProlog actually has syntactic sugar for writing a collection of facts using the same relation
more concisely, using semicolon ;. We separate out the edge definitions by source node below:

edge(1, 2; 1, 3; 1, 4).
edge(2, 4; 2, 6).
edge(3, 4).
edge(5, 4; 5, 6).

Now we can write a rule relating edges to form paths. Actually, this rule will be a rule schema,
ranging over variables for the nodes in question.

First, we say that paths are reflexive: every node has a path to itself.

path(X, X) :- node(X).

In this rule, X is a logic variable, which means it stands for any value. In logical notation, we
can read this as a quantified variable, i.e.:

∀x.node(x) ⇒ path(x, x)

By convention, in logic programming, logic variables start with a capital letter to distinguish
them from concrete terms.

Run Clingo now to see the output of this partial definition. You should see a path fact generated
from every node to itself.

Adding the line

#show path/2.

restricts the answer set just to the path predicate (/2 is syntax for the number of arguments
in the relation, which we have to include).

To generate a path fact for all transitive traversal of the edges, we write a recursive rule:

path(Source, Dest)
:- edge(Source, Target),

path(Target, Dest).

Running this program should produce the following answer set:

path(1,1) path(2,2) path(3,3) path(4,4) path(5,5) path(6,6)
path(1,2) path(1,3) path(1,4) path(2,4) path(2,6) path(3,4)
path(5,4) path(5,6) path(1,6)

6.1 Exercise
Modify the path relation to be a 3-place relation that counts the length of the path. You can add
numbers together with +.

7 Choice Rules
A choice rule allows us to use disjunction in the head of a rule, i.e. to say that either A or B may
hold. Choice rules allow us to define a generative space and are what lead to the possibility of
multiple answer sets.

Choice rules are written with curly braces. For example, the choice rule

{p}.

declares simply that p may be true or not. This produces two answer sets:

3

Answer: 1

Answer: 2
p

If we declare two choices, the number of answer sets increases combinatorially:

{p}. {q}.

produces

Answer: 1

Answer: 2
q
Answer: 3
p
Answer: 4
p q

Just like we could define multiple facts with syntactic sugar, we can do so inside of choice rules:
{p; q} is equivalent to the program above.

Choice rules let us do fun things like make sense of recursive definitions. For example, the
program

p :- q.
q :- p.

has a circular definition—p and q’s truth depends mutually on the other’s. But if we give ASP
a choice for the truth of these facts with {p; q}, it generates two answer sets:

Answer: 1

Answer: 2
q p

Both of these answers are possible worlds that satisfy the truth model posited by the program’s
rules.

7.1 Graph Coloring
The fun starts when we begin using logic variables inside choice rules. Let’s say we want to assign
a random color to every node in our graph. First let’s define some colors.

color(red). color(green). color(blue).

It may seem at first glance that we could write a choice rule

{colornode(1, C)}.

to simply choose any color for the node 1. But recall that ASP expands rules to their possible
instantiations. In order to do that, it has to know all valid instantiations of C. So we actually need
to tell it that C ranges over colors, which we do with a new piece of syntax, the colon ::

{colornode(1, C) : color(C)}.

This syntax says that for each instance of the predicate color(C), possibly assign that color
to the node 1. It can be seen as expanding to:

{colornode(1, red)}.
{colornode(1, green)}.
{colornode(1, blue)}.

4

However, this program means that the answer sets produced include multiple color assignments
for the node, as well as no color assignment:

Answer: 1

Answer: 2
colornode(1,blue)
Answer: 3
colornode(1,green)
Answer: 4
colornode(1,blue) colornode(1,green)
Answer: 5
colornode(1,red)
Answer: 6
colornode(1,red) colornode(1,green)
Answer: 7
colornode(1,red) colornode(1,blue)
Answer: 8
colornode(1,red) colornode(1,blue) colornode(1,green)

To prevent this under- and over-generation of assignments, we can use AnsProlog’s upper and
lower bound notation:

l { ...some predicates... } u

where l is a lower bound on the number of facts generated from the choice and u is an upper
bound. So if we write

1 {colornode(1, C) : color(C)} 1.

it will generate exactly one color assignment for node 1. To do this for all nodes, we want to
replicate the choice for each instantiation of the node predicate. We do this using a rule schema:

1 {colornode(X, C) : color(C)} 1 :- node(X).

This code produces 729 answers representing all possible colorings of the graph.

8 Integrity Constraints
Finally, in addition to setting mutual exclusion constraints through bounds on choice rules as
above, we can introduce constraints that say “this condition is illegal.” The answer sets produced
will be those that do not have the illegal condition.

We do this in AnsProlog by writing a headless rule:

:- condition.

In logical terms, this says “condition implies FALSE,” and FALSE inherently creates an in-
consistent world. Since ASP generates just those worlds that are consistent, this means that any
worlds containing the condition will be ruled out.

8.1 Exercise
See if you can create a condition ensuring that no two nodes with an edge between them has the
same color. If you finish that, try generating 3-colorable graphs.

9 Resources
The definitive manual for the Potassco ASP toolkit (Clingo, etc.) is http://wp.doc.ic.ac.uk/
arusso/wp-content/uploads/sites/47/2015/01/clingo_guide.pdf.

Adam Smith has a “map generation speed-run”: https://eis-blog.soe.ucsc.edu/2011/10/
map-generation-speedrun/

5

http://wp.doc.ic.ac.uk/arusso/wp-content/uploads/sites/47/2015/01/clingo_guide.pdf
http://wp.doc.ic.ac.uk/arusso/wp-content/uploads/sites/47/2015/01/clingo_guide.pdf
https://eis-blog.soe.ucsc.edu/2011/10/map-generation-speedrun/
https://eis-blog.soe.ucsc.edu/2011/10/map-generation-speedrun/

	Introduction
	Setup
	Running Clingo
	Facts and Rules
	Answer Sets
	Example: Edges and Paths
	Exercise

	Choice Rules
	Graph Coloring

	Integrity Constraints
	Exercise

	Resources

