
CSC241 Project Description

Daniel R. Schlegel
Department of Computer Science

SUNY Oswego

August 15, 2022

This project involves constructing a virtual world simulation which the user will interact with via a string-based
command line interface.1

Premise

In the simulation you will create, the player acts as a ghoul who is haunting a house. The goal is to scare everyone
else out of the house before a timer expires. Being a ghoul, the player is invisible to the house occupants, but may
interact with items in rooms – shaking, throwing, and possessing them. These actions cause other characters in the
room to get scared and either run out of the room or out of the house. The player continues this process until the
house is empty or the timer expires.

Description of the World

The virtual world consists of a series of rooms which are joined together with doors forming a house. A room can
have at most 4 doors, one to each of the north, east, south, and west. The player may move from their current room
to an adjacent room using the move command. A room may contain items and characters. Items always remain
in the same room, and rooms and doors always stay in the same place. Characters, on the other hand, can move
between rooms (for example, enter a room or leave it). A character leaving a room always means that the character
is entering another room – there are no hallways, and a character can only be in one room at a time. There are three
types of characters: the player character (PC), and two types of non-player character (NPCs) – adults and children.
There is only one player character. There can be multiple NPCs.

The house will contain at most 5 NPCs, therefore a room may contain at most 6 characters – all of the NPCs
plus the PC. Rooms, items, and characters all have unique names, as well as text descriptions. Each character also
has access to a look command, which lets it see the name and description of the room it is in, as well as the names
and descriptions of the characters and items in the room. Note that the player is invisible to NPCs, so while it can
see itself, it cannot be seen by the NPCs.

Each item in the player’s current room may be manipulated in one or more ways by the player. The three ways to
manipulate an item are: shake the item; posses the item causing it to float around the room; throw the item across
the room, breaking it. Not all items can have all manipulations done to them. Items are manipulated using shake,
possess, and throw commands. Once an item is broken it can no longer be manipulated and is noted as such in the
output of the look command.

Each NPC has a “scare level” parameter, initially at 0, indicating the NPC is not scared. When the NPC’s scare
level grows past 50, the NPC runs to another room; when it passes 100 the NPC runs out of the house. The NPCs
scare level is increased based on how the player haunts the items in the NPCs current room. When a character looks
around they room, the message printed should include the scare level of the occupants.

Manipulation of items by the player increases the scare level of each adult NPC in the room as follows: shaking
adds a random value between 5 and 15; possessing adds a random value between 10 and 25; throwing adds a random
value between 20 and 40. Children have their values increased at 1.5x the rate of adults.

Each time an NPC becomes more scared it shrieks, printing a message to the screen. When an NPC leaves a
room because its scare level has passed 50, it shrieks three times. If the NPC enters a room with broken items it

1This project is loosely based on both the Sega Genesis game Haunting Starring Polterguy and previous CSC241 projects written by
Alex Pantaleev and Lynna Cekova.

1

https://en.wikipedia.org/wiki/Haunting_(video_game)
http://danielschlegel.org/wp/wp-content/uploads/2017/08/CSC241Fl17_project_description.pdf


cleans them up (removing them from the item list). When the NPC leaves the house because it is scared, it gives
one final (extra loud) shriek.

The player must complete scaring all of the NPCs from the house before the play timer reaches zero. The timer
begins at 1 minute. If the timer expires with NPCs still in the house the game ends – a message is printed to the
screen and the program exits. Every time an NPC is forced to leave the house the remaining time is increases by 30
seconds.

Input, Output, and Game Interface

The primary game interface is a command line, where the user can input String commands, and where text messages
are shown to the user. Graphical components possibly will be added for portions of the interface.

Upon program startup, the user should be asked to provide an input file with information about the world (rooms,
characters, and items). Your program should parse this file, and, based on the information in this file, create the
rooms and the characters that are in them (including the player). A sample input file will be provided to you,
together with the description of the file format. You can use this file in writing and testing your project (or you
can make your own input files if you so wish), but keep in mind that other input files will be used upon evaluation
of the projects. (This means you do need to parse the file based on the file format; hard-coding input values is not
acceptable.)

Next, the user should be presented with a prompt to issue their String commands. When read by your program,
these String commands should be parsed and used to make the player character perform actions or order other
characters to perform actions. Output will be returned to the user (telling what is happening as a result of the
actions), followed by another prompt for a user command. The user will be presented with prompts for commands
until the user types exit, or until the game ends. If the game ends, the user receives a message. (Sample messages
are “Congratulations, you cleared the house and won the game!” or “You loser! You lost!”)

A Note on the Wording of Messages and Commands

The wording of the messages themselves is of no importance, as long as all the information of what is happening is
presented. In fact, you are encouraged to make adjustments and personalizations as this often makes the development
process more fun. The wording of the commands is important because they have to be processed computationally,
but again feel free to customize as long as you are consistent and the functionality remains. It’s worth taking the
time to decide in advance what your set of commands will be. Define the format of your own String commands and
show them to the user, together with a description of what they do, any time the user types help at the prompt.

2


