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Abstract Tractor is a system for understanding English messages within the con-
text of hard and soft information fusion for situation assessment. Tractor processes
a message through text processors using standard natural language processing tech-
niques, and represents the result in a formal knowledge representation language. The
result is a hybrid syntactic-semantic knowledge base that is mostly syntactic. Tractor
then adds relevant ontological and geographic information. Finally, it applies hand-
crafted syntax-semantics mapping rules to convert the syntactic information into
semantic information, although the final result is still a hybrid syntactic-semantic
knowledge base. This chapter presents the various stages of Tractor’s natural lan-
guage understanding process, with particular emphasis on discussions of the repre-
sentation used and of the syntax-semantics mapping rules.

1 Introduction

Tractor is a system for message understanding within the context of a multi-
investigator, multi-university effort on “Hard and Soft Information Fusion” [8]. In-
formation obtained from physical sensors such as RADAR, SONAR, and LIDAR
are considered hard information. Information from humans expressed in natural lan-
guage is considered soft information. Tractor [15] is a computational system that un-
derstands isolated English intelligence messages in the counter-insurgency domain
for later fusion with each other and with hard information, all to aid intelligence
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analysts to perform situation assessment. In this context, “understanding” means
creating a knowledge base (KB), expressed in a formal knowledge representation
(KR) language, that captures the information in an English message.

Tractor takes as input a single English message. The ultimate goal is for Tractor
to output a KB representing the semantic information in that message. Later systems
of the larger project combine these KBs with each other and with hard information.
Combining KBs from different messages and different hard sources is done via
a process of data association [8, 14] that operates by comparing the attributes of
and relations among the entities and events described in each KB. It is therefore
important for Tractor to express these attributes and relations as completely and
accurately as possible.

Many systems that are used for the same purpose as Tractor use information
extraction techniques. For example, on its web site, Orbis Technologies, Inc. says,
“Orbis Technologies, Inc. is a leader in providing cloud computing-based semantic
text analytics, using MapReduce, to support entity extraction, relationship identifi-
cation, and semantic search”, 2 and information extraction is defined as “the process
of identifying within text instances of specified classes of entities and of predications
involving these entities” [7, emphasis added]. Rather than merely trying to identify
certain pre-specified classes of entities and events (people, places, organizations,
etc.) in a top-down fashion, by looking for them in the text, we want to faithfully
identify and describe all the entities and events mentioned in each message in a
bottom-up fashion, converting to a semantic representation whatever occurs there.

Our approach is to use largely off-the-shelf natural language processing software
for text processing, to be discussed briefly in §3. The output of text processing is
a hybrid syntactic-semantic representation, with semantic classification of entities
contributed by named-entity recognizers. We translate the output of the text pro-
cessing to the KR language we use. The KR language is introduced in §2, and the
translator in §4. This KB is enhanced with relevant ontological and geographical in-
formation, briefly discussed in §5. Finally, hand-crafted syntax-semantics mapping
rules are used to convert the mostly syntactic KB into a mostly semantic KB. This
is still a hybrid syntactic-semantic representation, because the mapping rules do not
yet convert all the syntactic information. The specific representation constructs we
use are introduced in §6–8. The syntax-semantics mapping rules are discussed in
§9, and some summary information drawn from a semantic KB is shown in §10.
Although even the remaining syntactic information in the final KB is useful for data
association, our intention is to add mapping rules so that, over time, the KBs that are
produced are less syntactic and more semantic. The results of testing and evaluating
the system are presented and discussed in §11.

This chapter constitutes an update and current status report on Tractor, which
has been introduced and discussed in a previous set of papers [8, 15, 4, 10, 16].
An overview of the entire Hard and Soft Information Fusion project, and the ar-
chitecture of the process is given in [8]. An introduction to Tractor and its initial
architecture is given in [15]. An introduction to the Context-Based Information Re-

2 http://orbistechnologies.com/solutions/cloud-based-text-analytics/
emphasis added.
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trieval (CBIR) subprocess of Tractor, its proposed use of spreading activation, and
how spreading activation algorithms might be evaluated is given in [10]. A general
overview of the role of contextual information in information fusion architectures
is given in [4]. Tractor’s use of propositional graphs for representing syntactic and
semantic information is introduced in [16]. That paper ends with the comment, “The
graphs used in this paper have been hand-built using the mappings detailed in sec-
tion IV. Automating this process to produce propositional graphs such as these is
the major implementation focus of future work” [16, p. 527]. That work has now
largely been done. This chapter reports on the results of that work.

Tractor and the larger information fusion system of which it is a part have been
developed by experimenting with several datasets, particularly the Synthetic Coun-
terinsurgency (SynCOIN) [5] dataset. All examples in this chapter have been drawn
from these datasets.

2 SNePS 3

We use SNePS 3 [19] as the KR system for the KBs created by Tractor from the En-
glish messages. SNePS 3 is simultaneously a logic-based, frame-based, and graph-
based KR system [18], and is the latest member of the SNePS family of KR systems
[20]. In this chapter, we will show SNePS 3 expressions using the logical notation,
(R a1 . . . an), where R is an n-ary relation and a1, . . . ,an are its n arguments. We
will refer to such an expression as a “proposition”. We will use “assertion” to refer
to a proposition that is taken to be true in the KB, and say “assert a proposition”
to mean adding the proposition to the KB as an assertion. We will also speak of
“unasserting a proposition” to mean removing the assertion from the KB. The argu-
ments of a proposition are terms that could denote words, occurrences of words in
the message (called “tokens”), syntactic categories, entities in the domain, events in
the domain, classes (also referred to as “categories”) of these entities and events, or
attributes of these entities and events.

We can classify relations, and the propositions in which they occur, as either:
syntactic, taking as arguments terms denoting words, tokens, and syntactic cate-
gories; or as semantic, taking as arguments entities and events in the domain and
their categories and properties. A KB is syntactic to the extent that its assertions are
syntactic, and is semantic to the extent that its assertions are semantic. The KB first
created by Tractor from a message is mostly syntactic. After the syntax-semantics
mapping rules have fired, the KB is mostly semantic. A subtle change that occurs
as the mapping rules fire is that terms that originally denote syntactic entities are
converted into denoting semantic entities.3

3 What we call in this chapter the “syntactic KB” and the “semantic KB” were called in other
papers the “syntactic propositional graph” and the “semantic propositional graph,” respectively.
The reason is that, in this chapter, we are exclusively using the logic-based view of SNePS 3,
whereas in those papers, we used the graph-based view of SNePS 3. Their equivalence is explained
in [18].
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3 Text Processing

For initial text processing, we use GATE, the General Architecture for Text En-
gineering [2], which is a framework for plugging in a sequence of “process-
ing resources” (PRs). The most significant PRs we use, mostly from the AN-
NIE (a Nearly-New Information Extraction System) suite [1], are: the ANNIE
Gazetteer, for lexicon-based named-entity recognition; the ANNIE NE Transducer,
for rule-based named-entity recognition; the ANNIE Orthomatcher, ANNIE Nomi-
nal Coreferencer, and ANNIE Pronominal Coreferencer, for coreference resolution;
the GATE rule-based Morphological Analyser for finding the root forms of inflected
nouns and verbs; the Stanford Dependency Parser, for part-of-speech tagging and
parsing; and the GATE Co-reference Editor, for manual corrections of and additions
to the results of the three automatic coreference resolution PRs. We added to the
lexicons, added some rules to the rule-based PRs, added a supplementary part-of-
speech tagger, and fixed some program bugs. We did not modify the parser. We can
have a person use the Co-reference Editor as part of processing messages, or can
process messages completely automatically without using the Co-reference Editor.

The results of GATE processing, with or without the Co-reference Editor, is a
set of “annotations”, each consisting of an ID, a start and end position within the
message’s text string, a Type, and a set of attribute-value pairs. Each PR contributes
its own set of annotations, with its own IDs, and its own set of attributes and possible
values. Only the start and end positions indicate when an annotation of one PR
annotates the same text string as an annotation of another PR.

4 The Propositionalizer

The Propositionalizer examines the annotations produced by the GATE PRs, and
produces a set of SNePS 3 assertions. The stages of the Propositionalizer are: anno-
tation merging; correction of minor errors in syntactic categories; canonicalization
of dates, times, weights, and heights; and processing the structured portion of semi-
structured messages. Annotations covering the same range of characters are com-
bined into one SNePS 3 token-denoting term. Dates and times are converted into
ISO8601 format. Annotation types, subtypes (where they exist), parts-of-speech,
and dependency relations are converted into logical assertions about the tokens. The
actual text string of an annotation and the root found by the morphological ana-
lyzer are converted into terms and related to the annotation-token by the TextOf
and RootOf relations, respectively. Coreference chains are converted into instances
of the SNePS 3 proposition (Equiv t1 . . . tn), where t1 . . . tn are the terms for the
coreferring tokens.

Most of the messages we are dealing with have structured headers, generally con-
sisting of a message number and date, and sometimes a time. A message reporting a
call intercept generally lists a description or name of the caller and of the recipient,
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duration, medium (e.g., “cell phone” or “text message”), and intercepting analyst.
These are converted into SNePS 3 assertions.

As an example, consider message syn194:

194. 03/03/10 - Dhanun Ahmad has been placed into custody by the Iraqi police and trans-
ferred to a holding cell in Karkh; news of his detainment is circulated in his neighborhood
of Rashid.

The basic information about the word “placed” in SNePS 3 is

(TextOf placed n20)
(RootOf place n20)
(TokenRange n20 38 44)
(SyntacticCategoryOf VBN n20)

Here, n20 is a SNePS 3 term denoting the occurrence of the word “placed” in
character positions 38–44 of the message text. The last proposition says that the
syntactic category (part-of-speech) of that token is VBN, the past participle of a
verb [1, Appendix G].

Some of the dependency information about “placed”, with the text to make it
understandable is

(nsubjpass n20 n169)
(TextOf Ahmad n169)
(prep n20 n22)
(TextOf into n22)

That is, “Ahmad” is the passive subject of “placed”, and “placed” is modified by a
prepositional phrase using the preposition “into”.4

Some of the information about “Karkh” is5

(TextOf Karkh n182)
(SyntacticCategoryOf NNP n182)
(Isa n182 Location)

Notice that in the first two of these assertions, n182 denotes a token (a word
occurrence), but in (Isa n182 Location), it denotes an entity, specifically
a location, in the domain. This change in the denotation of individual constants
is a necessary outcome of the fact that we form a KB representing the syntactic
information in a text, and then gradually, via the syntax-semantics mapping rules,
turn the same KB into a semantic representation of the text.

The SNePS 3 KB that results from the Propositionalizer is what we call the syn-
tactic KB. Although it contains some semantic information, such as (Isa n182
Location), most of the information in it is syntactic.

4 In a dependency parse, each token actually represents the phrase or clause headed by that token.
5 Note that we are using Isa as the instance relation based on sentences like “Fido is a dog”. For
the subtype (or “subclass”) relation we use Type.
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5 Enhancement

The syntactic KB is enhanced with relevant information of two kinds: ontological
taxonomic information is added above the nouns and verbs occurring in the KB; and
geographical information is added to tokens of geographic place names occurring
in the message. The information to be added is found by a process called “Context-
Based Information Retrieval” (CBIR) [9].

CBIR looks up each noun and verb in ResearchCyc6 to find the corresponding
Cyc concept(s). Then it adds to the KB the terms above those concepts in OpenCyc.7

CBIR also looks up proper nouns in the NGA GeoNet Names Server database,8

and adds information found there to the KB. For example, the information added
about Karkh (n182) is

(Isa n182 SectionOfPopulatedPlace)
(GeoPosition n182 (GeoCoords |33.32174| |44.39384|))
(MGRS n182 38SMB4358187120)

Which say that Karkh is a section of a populated place, that its geographic position
is 33.32174 N latitude and 44.39384 E longitude, and that its MGRS (Military Grid
Reference System) coordinate is 38SMB4358187120.

If CBIR finds MGRS coordinates, but no latitude and longitude, it converts the
MGRS coordinates to latitude and longitude using NASA’s World Wind software
[12].

The information added by CBIR is important to the data association task in de-
ciding when terms from different messages should be considered to be coreferential.

6 Major Categories of Entities and Events

The actual message texts determine what categories of entities and events appear in
the semantic KBs. For example, in the message, “Owner of a grocery store on Dhu-
bat Street in Adhamiya said ...”, there is a mention of an entity which is an instance
of the category store. So the category of stores is represented in the semantic KB.
Nevertheless, there are some categories that play a role in the mapping rules in the
sense that there are rules that test whether some term is an instance of one of those
categories.

Such major categories of entities include: Person; Organization (a subcategory
of Group); company; Location; country; province; city; Date; Time; Phone (the
category of phone instruments); PhoneNumber (the category of phone numbers);
MGRSToken; JobTitle; Dimension (such as age, height, and cardinality); Group
(both groups of instances of some category, such as “mosques,” and groups of fillers

6 http://research.cyc.com/
7 http://www.opencyc.org/
8 http://earth-info.nga.mil/gns/html/
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of some role, such as “residents”); ReligiousGroup (such as “Sunni”); and exten-
sionalGroup (a group explicitly listed in a text, such as, “Dhanun Ahmad Mah-
mud, Mu’adh Nuri Khalid Jihad, Sattar ’Ayyash Majid, Abd al-Karim, and Ghazi
Husayn.”)

Major categories of events include: Action (such as “break” and “search”); Ac-
tionwithAbsentTheme (such as “denounce” and “report”); actionWithProposition-
alTheme (such as “say” and “hear”); Perception (such as “learn” and “recognize”);
and Event itself.

7 Relations

Relations used in the syntactic and semantic KBs can be categorized as either syn-
tactic relations or semantic relations.

The syntactic relations we use include the following.

• (TextOf x y) means that the token y in the message is an occurrence of the
word x.

• (RootOf x y)means that x is the root form of the word associated with token
y .

• (SyntacticCategoryOf x y) means that x is the syntactic category
(part-of-speech) of the word associated with token y .

• (r x y), where r is one of the dependency relations listed in [3], for example
nsubj, nsubjpass, dobj, prep, or nn, means that token y is a depen-
dent of token x with dependency relation r.

The semantic relations we use include the ones already mentioned (such as Isa
and Equiv), and the following.

• (Type c1 c2) means that c1 is a subcategory of c2.
• (hasName e n) means that n is the proper name of the entity e.
• (GroupOf g c) means that g is a group of instances of the class c.
• (GroupByRoleOf g r) means that g is a group of entities that fill the role,
r.

• (MemberOf m g) means that entity m is a member of the group g.
• (hasPart w p) means that p is a part of entity w .
• (hasLocation x y) means that the location of entity x is location y .
• (Before t1 t2) means that time t1 occurs before time t2.
• (r x y), where r is a relation (including possess, knows, outside,
per-country of birth, org-country of headquarters, agent,
experiencer, topic, theme, source, and recipient), means that the
entity or event x has the relation r to the entity or event y .

• (a e v), where a is an attribute (including cardinality, color, Date,
height, GeoPosition, sex, per-religion, per-date of birth,
and per-age), means that the value of the attribute a of the entity or event
e is v .
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One relation, although syntactic, is retained in the semantic KB for pedigree
purposes: (TokenRange x i j) means that the token x occurred in the text
starting at character position i, and ending just before character position j. This
is retained in the semantic KBs so that semantic information may be tracked to
the section of text which it interprets. Two other syntactic relations, TextOf and
RootOf, are retained in the semantic KB at the request of the data association group
to provide term labels that they use for comparison purposes.

We believe that the syntactic relations we use are all that we will ever need,
unless we change dependency parsers, or the dependency parser we use is upgraded
and the upgrade includes new dependency relations. However, we make no similar
claim for the semantic relations.

Assertions that use syntactic relations are called “syntactic assertions,” and those
that use semantic relations are called “semantic assertions.”

8 Representation of Events

To represent events, we use a neo-Davidsonian representation [13], in which the
event is reified and semantic roles are binary relations between the event and the
semantic role fillers. For suggestions of semantic roles, we have consulted the entries
at [22]. For example, in the semantic KB Tractor constructed from message syn064,

64. 01/27/10 - BCT forces detained a Sunni munitions trafficker after a search of his car
netted IED trigger devices. Ahmad Mahmud was placed in custody after his arrest along
the Dour’a Expressway, //MGRSCOORD: 38S MB 47959 80868//, in East Dora.

the information about the detain event includes

(Isa n18 detain)
(Date n18 20100127)
(agent n18 n16)
(GroupOf n16 force)
(Modifier n16 BCT)
(theme n18 n26)
(Equiv n230 n26)
(Isa n230 Person)
(hasName n230 "Ahmad Mahmud")

That is, n18 denotes a detain event that occurred on 27 January 2010, the agent of
which was a group of BCT forces, and the theme of which was (coreferential with)
a person named Ahmad Mahmud.

9 The Syntax-Semantics Mapper

The purpose of the syntax-semantics mapping rules is to convert information ex-
pressed as sets of syntactic assertions into information expressed as sets of semantic
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assertions. The rules were hand-crafted by examining syntactic constructions in sub-
sets of our corpus, and then expressing the rules in general enough terms so that each
one should apply to other examples as well.

The rules are tried in order, so that earlier rules may make adjustments that allow
later rules to be more general than they otherwise would have to be, and earlier rules
may express exceptions to more general later rules. As of this writing, there are 147
mapping rules, that may be divided into several categories:

• CBIR, supplementary enhancement rules add ontological assertions that aren’t in
Cyc, but that relate to terms in the message;

• SYN, syntactic transformation rules examine syntactic assertions, unassert some
of them, and make other syntactic assertions;

• SEM, semantic transformation rules examine semantic assertions, unassert some
of them, and make other semantic assertions;

• SYNSEM, true syntax-semantic mapping rules examine syntactic assertions and
maybe some semantic assertions as well, unassert some of the syntactic asser-
tions, and make new semantic assertions;

• CLEAN, cleanup rules unassert some remaining syntactic assertions that do not
further contribute to the understanding of the message;

• INFER, inference rules make semantic assertions that are implied by other se-
mantic assertions in the KB.

Due to space constraints, only a few rules will be discussed.9

An example of a syntactic transformation ruleis

(defrule passiveToActive
(nsubjpass ?verb ?passsubj)
=>
(assert ‘(dobj ,?verb ,?passsubj))
(unassert
‘(nsubjpass ,?verb ,?passsubj))

(:subrule
(prep ?verb ?bytok)
(TextOf by ?bytok)
(pobj ?bytok ?subj)
=>
(assert ‘(nsubj ,?verb ,?subj))
(unassert ‘(prep ,?verb ,?bytok))
(unassert ‘(pobj ,?bytok ,?subj))))

This rule would transform the parse of “BCT is approached by a man” to the parse
of “a man approached BCT”. The rule fires even if the “by” prepositional phrase is
omitted.

There are also some rules for distribution over conjunctions. One such rule would
transform the parse of “They noticed a black SUV and a red car parked near the

9 The rules are shown using the actual rule syntax.
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courthouse” to the parse of “They noticed a black SUV parked near the courthouse
and a red car parked near the courthouse” by adding an additional partmod rela-
tion, from the token for “car” to the head token of “parked near the courthouse”.
Then another rule would transform that into the parse of “They noticed a black SUV
parked near the courthouse and they noticed a red car parked near the courthouse”
by adding a second dobj relation, this one from the token of “noticed” to the token
of “car.”

Some examples of true syntax-semantics mapping rules operating on noun
phrases (presented in the relative order in which they are tried) are:

(defrule synsemReligiousGroup
(Isa ?g relig_group_adj)
(TextOf ?name ?g)
=>
(assert ‘(Isa ,?g ReligiousGroup))
(assert ‘(hasName ,?g ,?name))
(assert ’(Type ReligiousGroup Group))
(unassert ‘(Isa ,?g relig_group_adj)))

This rule would transform the token for “Sunni”, which the GATE named entity
recognizers recognized to name a relig group adj, into an entity that is an instance
of ReligiousGroup, whose name is Sunni. It also makes sure that the relevant
fact that ReligiousGroup is a subcategory of Group is included in the semantic
KB for the current message.

(defrule hasReligion
(Isa ?religiongrp ReligiousGroup)
(nn ?per ?religiongrp)
(hasName ?religiongrp ?religion)
=>
(assert (MemberOf ?per ?religiongrp))
(assert (per-religion ?per ?religion))
(unassert (nn ?per ?religiongrp)))

This rule would assert about the token of “youth” in the parse of “a Sunni youth” that
it is a member of the group named Sunni, and that its religion is Sunni. It also
would unassert the nn dependency of the token of “Sunni” on the token of “youth”.

(defrule properNounToName
(SyntacticCategoryOf NNP ?token)
(TextOf ?text ?token)
=>
(assert ‘(hasName ,?token ,?text))
(unassert ‘(SyntacticCategoryOf NNP ,?token))
(unassert ‘(TextOf ,?text ,?token)))

This rule would transform a token of the proper noun “Khalid Sattar” into a token
denoting the entity whose name is "Khalid Sattar".
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(defrule nounPhraseToInstance
(SyntacticCategoryOf NN ?nn)
(:when (isNPhead ?nn))
(RootOf ?root ?nn)
(:unless (numberTermp ?root))
=>
(assert ‘(Isa ,?nn ,?root))
(unassert ‘(SyntacticCategoryOf NN ,?nn))
(unassert ‘(RootOf ,?root ,?nn)))

This rule would transform the token of “youth” in the parse of “a Sunni youth” into
an instance of the category youth. The function isNPhead returns True if its ar-
gument is the head of a noun phrase, recognized by either having a det dependency
relation to some token, or by being an nsubj, dobj, pobj, iobj, nsubjpass, xsubj, or
agent dependent of some token. (In the corpus we work on, determiners are some-
times omitted.) The (:unless (numberTermp ?root)) clause prevents a
token of a number from being turned into an instance of that number.

Another rule makes the token of a verb an instance of the event category ex-
pressed by the root form of the verb. For example, a token of the verb “detained”
would become an instance of the event category detain, which is a subcategory
of Action, which is a subcategory of Event.

Some examples of syntax-semantics mapping rules that analyze clauses (pre-
sented in the relative order in which they are tried) are:

(defrule subjAction
(nsubj ?action ?subj)
(Isa ?action Action)
=>
(assert ‘(agent ,?action ,?subj))
(unassert ‘(nsubj ,?action ,?subj)))

This rule would make the subject of “detained” the agent of a detain Action-
event.

(defrule subjPerception
(nsubj ?perception ?subj)
(Isa ?perception Perception)
=>
(assert ‘(experiencer ,?perception ,?subj))
(unassert ‘(nsubj ,?perception ,?subj)))

This rule would make the subject of “overheard” the experiencer of a overhear
Perception-event.

Another rule makes the date of an event either the date mentioned in the depen-
dency parse tree below the event token, for example the date of the capture event in
“Dhanun Ahmad Mahmud Ahmad, captured on 01/27/10, was turned over to ...” is
20100127, or else the date of the message being analyzed.



12 Stuart C. Shapiro and Daniel R. Schlegel

A final set of syntax-semantics mapping rules convert remaining syntactic asser-
tions into “generic” semantic assertions. For example, any remaining prepositional
phrases, after those that were analyzed as indicating the location of an entity or
event, the “by” prepositional phrases of passive sentences, etc., are transformed into
a assertion using the preposition as a relation holding between the entity or event
the PP was attached to and the object of the preposition.

Cleanup rules unassert syntactic assertions that were already converted into se-
mantic assertions, for example unasserting (TextOf x y) and (RootOf x
y) when (Isa y x) has been asserted. Other cleanup rules unassert remain-
ing syntactic assertions that do not contribute to the semantic KB, such as the
SyntacticCategoryOf assertions.

The inference rules make certain derivable assertions explicit for the benefit of
the data association operation. For example, the agent of an event that occurred at
some location on some date was at that location on that date, and the member of a
group g1 that is a subgroup of a group g2 is a member of g2.

10 Results

In order for a person to get an idea of what is in the semantic KBs, we have im-
plemented a simple natural language generation function that expresses the infor-
mation in a KB in short formalized sentences. Each relation is associated with a
sentence frame whose slots are filled in from the relation’s arguments. A term with
a proper name, or which is coreferential with one with a proper name, is expressed
by its name. Otherwise, terms that are instances of some category are expressed by
a symbol constructed from its category. For example, some of the information in the
semantic KB that Tractor constructed from syn064, shown and discussed in §8, is

detain18
Instance of: detain
detain18’s Date is |20100127|.
detain18 has the relation agent to |BCT forces|.
detain18 has the relation theme to |Ahmad Mahmud|.
detain18 has the relation after to search32.

|BCT forces|
Instance of: Organization
detain18 has the relation agent to |BCT forces|.

search32
Instance of: search
search32’s Date is |20100127|.
search32 has the relation theme to car108.
detain18 has the relation after to search32.



Natural Language Understanding for Information Fusion 13

|Ahmad Mahmud|
Instance of: (setof Person trafficker)
|Ahmad Mahmud|’s sex is male.
|Ahmad Mahmud|’s Religion is Sunni.
|Ahmad Mahmud| has the relation possess to car108.
|Ahmad Mahmud| is located at Expressway.
|Ahmad Mahmud| is located at Expressway’s Date is

|20100127|.
detain18 has the relation theme to |Ahmad Mahmud|.
arrest65 has the relation theme to |Ahmad Mahmud|.

arrest65
Instance of: arrest
arrest65’s Date is |20100127|.
arrest65 is located at Expressway.
arrest65 has the relation theme to |Ahmad Mahmud|.
place55 has the relation after to arrest65.

place55
Instance of: place
place55’s Date is |20100127|.
place55 is located at |East Dora|.
place55 has the relation in to custody59.
place55 has the relation after to arrest65.

|East Dora|
Instance of: (setof Location SectionOfPopulatedPlace)
|East Dora|’s GeoPosition is latitude |36.29534|,

longitude |44.47780|.
|East Dora|’s Longitude is |44.4091|.
|East Dora|’s MGRS is 38SMB4496078958.
|East Dora|’s MGRSRadius is |0.5|.
place55 is located at |East Dora|.

11 Evaluation

The mapping rules were developed by testing Tractor on several corpora of mes-
sages, examining the resulting semantic KBs, finding cases where we were not
happy with the results, examining the initial syntactic KBs, and modifying or adding
to the rule set so that an acceptable result was obtained. These “training” messages
included: the 100 messages from the Soft Target Exploitation and Fusion (STEF)
project [17]; the 7 Bomber Buster Scenario messages [8]; the 13 messages of the
Bio-Weapons Thread, 84 messages of the Rashid IED Cell Thread, and 115 mes-
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Table 1 The number of mapping rules in each category, the number of those rules that fired on any
message in the SCT dataset, the total number of times those rules fired, and the average number of
times they fired per message.

Rule Type Rule Count Rules Fired Times Fired Firings/msg

CBIR 1 1 474 8.32
SYN 23 13 1,596 28.00
SEM 5 5 328 5.75
SYNSEM 99 56 2,904 50.95
INFER 9 8 135 2.37
CLEAN 10 8 6,492 113.89
TOTAL 147 91 11,929 209.28

sages of the Sunni Criminal Thread, of the 595-message SynCOIN dataset [5, 6].
None of these messages were actual intelligence messages, but are “a creative rep-
resentation of military reports, observations and assessments” [6]. Tractor is still a
work in progress. We have not yet finished testing, modifying, and adding to the
mapping rules using these training sets.

We are currently developing a “grading rubric” to measure the correctness and
completeness of the semantic KBs produced by Tractor against manually produced
“gold standard” semantic KBs. We will then have to produce those gold standard
KBs, and compare them with those produced by Tractor. We hope to report on this
grading rubric, and on Tractor’s grades in a future paper.

Nevertheless, we can now evaluate how general the mapping rules are, and
whether they are perhaps overly general. The generality of the rules will be tested
through examination of how often the mapping rules fire on a “test” dataset, not pre-
viously examined. We’ll look at the amount of syntactic and semantic data there are
in the processed graphs from our test and training sets. We’ll also look at how many
mistakes Tractor makes on the test dataset, to test for over-generality. Combined,
these three experiments will show that our rules are general, but not overly so, that
the amount of semantic data in the resultant semantic KBs is quite high, and that the
degree of semantization compares well with that of our training sets.

We begin by addressing the question of, given that the mapping rules were de-
veloped using the training messages, how general are they? To what extent do they
apply to new, unexamined, “test” messages? To answer this question, we used the
57 messages of the the Sectarian Conflict Thread (SCT) of the SynCOIN dataset.
These messages, averaging 46 words per message, contain human intelligence re-
ports, “collected” over a period of about five months, which describe a conflict
among Christian, Sunni, and Shi’a groups. The messages describe events in detail,
and entities usually only through their connection to some group or location.

We divided the rules into the six categories listed in §9, and counted the number
of rules used in the SCT corpus, along with the number of rule firings, as seen in
Table 1. Of the 147 rules currently part of the system, 91 fired during the processing
of this corpus for a total of 11,929 rule firings. Sixty-nine rules fired five or more
times, and 80 were used in more than one message. 62% of all the rules and 57%
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Table 2 For the total SCT dataset, the number of syntactic assertions, the number of semantic
assertions and the percent of assertions that are semantic in the syntactic KBs, the semantic KBs,
and in the semantic KBs without counting the assertions added by CBIR.

KB Syntactic Semantic Percent Semantic

Syntactic 2,469 1,149 31.76%
Semantic 538 48,561 98.90%
without CBIR 538 5,646 91.30%

Table 3 Percent of the semantic KBs which are semantic for the BBS and STEF training sets,
excluding the CBIR enhancements.

Dataset Syntactic Semantic Pct Semantic

BBS 57 750 92.94%
STEF 517 8,326 94.15%

of the true syntax-semantics mapping rules fired on the test messages. We conclude
that, even though the rules were developed by looking at specific examples, they are
reasonably general.

The purpose of the syntax-semantics mapping rules is to convert syntactic infor-
mation about the words, phrases, clauses and sentences in a message into semantic
information about the entities and events discussed in the message. We are still in
the process of developing the rule set, so it is useful to measure the percentage of
each KB that consists of semantic assertions. Table 2 shows the number of syntac-
tic assertions,10 the number of semantic assertions, and the percent of assertions
that are semantic in the initial syntactic KBs, the final semantic KBs, and the final
semantic KBs without counting the semantic assertions added by CBIR (see §5).
The numbers are the totals over all 57 messages of the SCT dataset. As you can
see, before the mapping rules, the KBs are almost 70% syntactic, whereas after the
mapping rules they are more than 90% semantic. CBIR is purely additive, so it does
not reduce the number of syntactic assertions in the KB, but it does increase the
semantic content of the KBs to nearly 99%.

The percentage of the semantic KBs from the test message set that is semantic,
91.30%, is very similar to that of the training message sets. For example, the seman-
tic content of the semantic KBs of two of these training sets, the BBS and STEF
datasets, are 92.94%, and 94.15%, respectively, as shown in Table 3. We conclude
that, even though we are still developing the mapping rules, the ones we have so far
are converting a large part of the syntactic information into semantic information,
and doing so in a way that generalizes from the training sets to test sets.

Since the mapping rules were designed using the training datasets, it is possible
that some of the rules that fire in our test dataset (as shown in Table 1) are erroneous.

10 The TokenRange, TextOf, and RootOf assertions, which are syntactic, but are retained
in the semantic KB for pedigree information and to assist in the downstream scoring of entities
against ench other, as explained at the end of §7, have been omitted from the count.
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Table 4 The number of rules used in each category, along with the number of times rules from
each category were used in the SCT dataset, and the number of times they were used correctly.

Rule Type Rules Used Times Fired Fired Correctly
Number Percent

CBIR 1 474 474 100%
SYN 13 1,567 1,548 98.79%
SEM 5 328 328 100%
SYNSEM 56 2,651 2,431 91.7%
INFER 8 85 72 84.7%
CLEAN 8 6,492 6,492 100%
TOTAL 91 11,597 11,345 97.8%

That is, the rules may be too general. In order to verify that the rules function as
expected, we manually verified that the rules were applied only where they should
be.

In order to perfrom this experiment we ran the mapping rules on each message in
the dataset, noting after each rule firing whether the firing was correct or incorrect.
Rules which fired due to misparses earlier in the process were not counted as rules
used. A rule was counted as firing correctly if its output was semantically valid and
in accord with the intent of the rule.

As Table 4 shows, very rarely were rules applied overzealously. Therefore we
can say with some certainty that the rules are not only general enough to fire when
processing messages from corpora other than the training set, but they are not overly
general; the firings produce a valid semantization of the messages.

Comparison with Other Systems

Our system produces results which are much different from those of the most re-
lated system we’re aware of—Orbis Technologies’ proprietary Cloud Based Text-
Analytics (CTA) software. The output of the two systems are not directly compara-
ble. CTA attempts to identify and find relationships among entities, in the process
identifying the entities’ types as either Person, Organization, Location, Equipment,
or Date. Where we identify all the types of entities (and have more types, such as
Group and Event), Orbis only seems to identify them when they are in a relation. An
Orbis relation is simple—an entity is associated with another entity. Tractor
uses a large set of relations for representing complex relationships between entities.

Within the 57 SCT messages, Tractor identified (among many other things) 34
entities which were members of specific groups, the religion of 17 entities, 203
locations of events or entities, and 33 persons or groups with specific roles. It addi-
tionally identified 102 agents of specific events, 128 themes of events, and over 125
spatial relationships such as “in”, “on” and “near”.
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12 Conclusions

Tractor is a system for message understanding within the context of hard and soft
information fusion for situation assessment. Tractor’s processing is bottom-up—
find whatever is in the text, rather than top-down—look for pre-specified entities,
events, and relations. Tractor uses GATE Processing Resources (PRs) for text anal-
ysis, including named-entity recognition, coreference resolution, part-of-speech tag-
ging, and dependency parsing. The propositionalizer converts the annotations pro-
duced by the GATE PRs into a hybrid syntactic-semantic knowledge base (KB)
represented in the SNePS 3 knowledge representation system. Relevant ontologi-
cal and geographic information is added to the KB, and then hand-crafted syntax-
semantics mapping rules convert the syntactic information into semantic informa-
tion. Although these rules were devised by looking at specific “training” message
sets, 62% of them fired on a separate set of “test” messages. Moreover, not counting
syntactic information that is used by later stages of fusion, Tractor, operating on
the test messages, was found to convert syntactic KBs that are 68% syntactic into
semantic KBs that are 91% semantic (99% semantic when added ontological and
geographical information is counted). Not counting rule firings on syntactic asser-
tions that resulted from misparsings, 98% of the rule firings on the test messages
resulted in semantically correct assertions that were in accord with what the rule
was designed to do.
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