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Abstract. Since their popularity began to rise in the mid-2000s there has been
significant growth in the number of multi-core and multi-processor computers
available. Knowledge representation systems using logical inference have been
slow to embrace this new technology. We present the concept of inference graphs,
a natural deduction inference system which scales well on multi-core and multi-
processor machines. Inference graphs enhance propositional graphs by treating
propositional nodes as tasks which can be scheduled to operate upon messages
sent between nodes via the arcs that already exist as part of the propositional
graph representation. The use of scheduling heuristics within a prioritized mes-
sage passing architecture allows inference graphs to perform very well in forward,
backward, bi-directional, and focused reasoning. Tests demonstrate the useful-
ness of our scheduling heuristics, and show significant speedup in both best case
and worst case inference scenarios as the number of processors increases.

1 Introduction

Since at least the early 1980s there has been an effort to parallelize algorithms for logi-
cal reasoning. Prior to the rise of the multi-core desktop computer, this meant massively
parallel algorithms such as that of [3] on the (now defunct) Thinking Machines Corpo-
ration’s Connection Machine, or using specialized parallel hardware which could be
added to an otherwise serial machine, as in [10]. Parallel logic programming systems
designed during that same period were less attached to a particular parallel architec-
ture, but parallelizing Prolog (the usual goal) is a very complex problem [17], largely
because there is no persistent underlying representation of the relationships between
predicates. Parallel Datalog has been more successful (and has seen a recent resurgence
in popularity [7]), but is a much less expressive subset of Prolog. Recent work in par-
allel inference using statistical techniques has returned to large scale parallelism using
GPUs, but while GPUs are good at statistical calculations, they do not do logical infer-
ence well [24].

We present inference graphs [16], a graph-based natural deduction inference system
which lives within a KR system, and is capable of taking advantage of multiple cores
and/or processors using concurrent processing techniques rather than parallelism [21].
We chose to use natural deduction inference, despite the existence of very well per-
forming refutation based theorem provers, because our system is designed to be able
to perform forward inference, bi-directional inference [19], and focused reasoning in
addition to the backward inference used in resolution. Natural deduction also allows
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formulas generated during inference to be retained in the KB for later re-use, whereas
refutation techniques always start by assuming the negation of the formula to be de-
rived, making intermediate derivations useless for later reasoning tasks. In addition, our
system is designed to allow formulas to be disbelieved, and to propagate that disbelief
to dependent formulas. We believe inference graphs are the only concurrent inference
system with all these capabilities.

Inference graphs are, we believe, unique among logical inference systems in that the
graph representation of the KB is the same structure used for inference. Because of
this, the inference system needn’t worry about maintaining synchronicity between the
data contained in the inference graph, and the data within the KB. This contrasts with
systems such as [23] which allow queries to be performed upon a graph, not within it.
More similar to our approach is that of Truth Maintenance Systems [4] (TMSes), which
provide a representation of knowledge based on justifications for truthfulness. The TMS
infers within itself the truth status of nodes based on justifications, but the justifications
themselves must be provided by an external inference engine, and the truth status must
then be reported back to the inference engine upon request.

Drawing influences from multiple types of TMS [4,8,12], RETE networks [5], and
Active Connection Graphs [13], and implemented in Clojure [6], inference graphs are
an extension of propositional graphs allowing messages about assertional status and in-
ference control to flow through the graph. The existing arcs within propositional graphs
are enhanced to carry messages from antecedents to rule nodes, and from rule nodes
to consequents. A rule node in an inference graph combines messages and implements
introduction and elimination rules to determine if itself or its consequents are true or
negated.

In Sect. 2 we review propositional graphs and introduce an initial example, followed
by our introduction to inference graphs in Sect. 3. Section 4 explains how the infer-
ence graphs are implemented in a concurrent processing system. In Sect. 5 we present
a second illustrative example. We evaluate the implementation in Sect. 6 and finally
conclude with Sect. 7.

2 Propositional Graphs

Propositional graphs in the tradition of the SNePS family [20] are graphs in which
every well-formed expression in the knowledge base, including individual constants,
functional terms, atomic formulas, and non-atomic formulas (which we will refer to as
“rules”), is represented by a node in the graph. A rule is represented in the graph as
a node for the rule itself (henceforth, a rule node), nodes for the argument formulas,
and arcs emanating from the rule node, terminating at the argument nodes. Arcs are
labeled with an indication of the role the argument plays in the rule, itself. Every node
is labeled with an identifier. Nodes representing individual constants, proposition sym-
bols, function symbols, or relation symbols are labeled with the symbol itself. Nodes
representing functional terms or non-atomic formulas are labeled wfti, for some inte-
ger, i.1 An exclamation mark, “!”, is appended to the label if the proposition is true in
the KB. No two nodes represent syntactically identical expressions; rather, if there are

1 “wft” rather than “wff” for reasons that needn’t concern us in this paper.
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multiple occurrences of one subexpression in one or more other expressions, the same
node is used in all cases.

In this paper, we will limit our discussion to inference over formulas of logic which
do not include variables or quantifiers.2 Specifically, we have implemented introduction
and elimination rules for the set-oriented connectives andor, and thresh [18], and
the elimination rules for numerical entailment. The andor connective, written (andor
(i j) p1 . . . pn), 0 ≤ i ≤ j ≤ n, is true when at least i and at most j of p1 . . . pn are true
(that is, an andor may be introduced when those conditions are met). It generalizes
and (i = j = n), or (i = 1, j = n), nand (i = 0, j = n−1), nor (i = j = 0, n > 1),
xor (i = j = 1), and not (i = j = 0, n = 1). For the purposes of andor-elimination,
each of p1 . . . pn may be treated as an antecedent or a consequent, since when any j
formulas in p1 . . . pn are known to be true (the antecedents), the remaining formulas (the
consequents) can be inferred to be negated, and when any n − i arguments are known
to be false, the remaining arguments can be inferred to be true. For example with xor,
a single true formula causes the rest to become negated, and if all but one are found
to be negated, the remaining one can be inferred to be true. The thresh connective,
the negation of andor, and written (thresh (i j) p1 . . . pn), 0 ≤ i ≤ j ≤ n, is true
when either fewer than i or more than j of p1 . . . pn are true. The thresh connective is
mainly used for equivalence (iff), when i = 1 and j = n− 1. As with andor, for the
purposes of thresh-elimination, each of p1 . . . pn may be treated as an antecedent or a
consequent. Numerical entailment is a generalized entailment connective, written (=>
i (setof a1 . . . an) (setof c1 . . . cm)) meaning if at least i of the antecedents,
a1 . . . an, are true then all of the consequents, c1 . . . cm, are true. The initial example
and evaluations in this paper will make exclusive use of two special cases of numerical
entailment – or-entailment, where i = 1, and and-entailment, where i = n [20].

In our initial example we will use two rules, one using an and-entailment and one
using an or-entailment:(if (setof a b c) d), meaning that whenevera, b, and
c are true then d is true; and (v=> (setof d e) f), meaning that whenever d or
e is true then f is true. In Fig. 1 wft1 represents the and-entailment (if (setof a
b c) d). The identifier of the rule node wft1 is followed by an exclamation point,
“!”, to indicate that the rule (well-formed formula) is asserted – taken to be true. The
antecedents, a, b, and c are connected to wft1 by arcs labeled with ∧ant, indicating
they are antecedents of an and-entailment. An arc labeled cq points from wft1 to d,
indicating d is the consequent of the rule. wft2 represents the or-entailment (v=>
(setof d e) f). It is assembled in a similar way to wft1, but the antecedents are
labeled with ∨ant, indicating this rule is an or-entailment. While much more complex
examples are possible (and one is shown in Section 5), we will use this rather simplistic
one in our initial example since it illustrates the concepts presented in this paper without
burdening the reader with the details of the, perhaps less familiar, andor and thresh
connectives.

The propositional graphs are fully indexed, meaning that not only can the node at
the end of an arc be accessed from the node at the beginning of the arc, but the node
at the beginning of the arc can be accessed from the node at the end of the arc. For
example, it is possible to find all the rule nodes in which d is a consequent by following

2 The system has been designed to be extended to a logic with quantified variables in the future.



Concurrent Reasoning with Inference Graphs 141
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Fig. 1. Propositional graph for the assertions that if a, b, and c are true, then d is true, and if d or
e are true, then f is true

cq arcs backward from node d (We will refer to this as following the reverse cq arc.),
and it is possible to find all the or-entailment rule nodes in which d is an antecedent by
following reverse ∨ant arcs from node d.

3 Inference Graphs

Inference graphs are an extension of propositional graphs to allow deductive reasoning
to be performed in a concurrent processing system. Unlike many KR systems which
have different structures for representation and inference, inference graphs serve as
both the representation and the inference mechanism.

To create an inference graph, certain arcs and certain reverse arcs in the proposi-
tional graph are augmented with channels through which information can flow. Chan-
nels come in two forms. The first type, i-channels, are added to the reverse antecedent
arcs. These are called i-channels since they carry messages reporting that “I am true” or
“I am negated” from the antecedent node to the rule node. Channels are also added to
the consequent arcs, called u-channels,3 since they carry messages to the consequents
which report that “you are true” or “you are negated.” Rules are connected by shared
subexpressions, as wft1 and wft2 are connected by the node d.

Figure 2 shows the propositional graph of Fig. 1 with the appropriate channels il-
lustrated. i-channels (dashed arcs) are drawn from a, b, and c to wft1, and from d,
and e to wft2. These channels allow the antecedents to report to a rule node when it
(or its negation) has been derived. u-channels (dotted arcs) are drawn from wft1 to d
and from wft2 to f so that rule nodes can report to consequents that they have been
derived.

Each channel contains a valve. Valves enable or prevent the flow of messages forward
through the graph’s channels. When a valve is closed, any new messages which arrive
at it are added to a waiting set. When a valve opens, messages waiting behind it are sent
through. Often we will speak of a channel being open or closed, where that is intended
to mean that the valve in the channel is open or closed.

3 u-channels and u-infer messages were previously called y-channels and Y-INFER mes-
sages in [14,16].
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Fig. 2. The same propositional graph from Fig. 1 with the appropriate channels added. Channels
represented by dashed lines are i-channels and are drawn from antecedents to rule nodes. Chan-
nels represented by dotted lines are u-channels and are drawn from rule nodes to consequents.

Inference graphs are capable of forward, backward, bi-directional, and focused in-
ference. In forward inference, messages flow forward through the graph, ignoring any
valves they reach. In backward inference, messages are sent backward through incom-
ing channels to open valves, and hence other messages about assertions are allowed
to flow forward only along the appropriate paths. Normally when backward inference
completes, the valves are closed. Focused inference can be accomplished by allowing
those valves to remain open, thus allowing messages reporting new assertions to flow
through them to answer previous queries. Bi-directional inference can begin backward
inference tasks to determine if an unasserted rule node reached by a forward inference
message can be derived.

3.1 Messages

Messages of several types are transmitted through the inference graph’s channels, serv-
ing two purposes: relaying newly derived information, and controlling the inference
process. A message can be used to relay the information that its origin has been as-
serted or negated (an i-infer message), that its destination should now be asserted
or negated (u-infer), or that its origin has either just become unasserted or is no
longer sufficiently supported (unassert). These messages all flow forward through
the graph. Other messages flow backward through the graph controlling inference by af-
fecting the channels: backward-infer messages open them, and cancel-infer
messages close them. Messages are defined as follows:

< origin, support , type, assertStatus?, fwdInfer?, priority >

where origin is the node which produced the message; support is the set of support
which allowed the derivation producing the message (for ATMS-style belief revision
[8,11]); type is the type of the message (such as i-infer or backward-infer, de-
scribed in detail in the next several subsections); fwdInfer? states whether this message
is part of a forward-inference task; assertStatus? is whether the message is reporting
about a newly true or newly false node; and priority is used in scheduling the con-
sumption of messages (discussed further in Sect. 4). We define the different types of
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messages below, while the actions the receipt of those messages cause are discussed in
Secs. 3.2 and 3.3.

i-infer. When a node is found to be true or false, an i-infer message reflect-
ing this new assertional status is submitted to its outgoing i-channels. These messages
are sent from antecedents to rule nodes. An i-infer message contains a support set
which consists of every node used in deriving the originator of the message. These
messages optionally can be flagged as part of a forward inference operation, in which
case they treat any closed valves they reach as if they were open. The priority of an
i-infer message is one more than that of the message that caused the change in
assertional status of the originator. Section 4 will discuss why this is important.

u-infer. Rule nodes which have just learned enough about their antecedents to fire
send u-infer messages to each of their consequents, informing them of what their
new assertional status is – either true or false.4 As with i-infermessages, u-infer
messages contain a support set, can be flagged as being part of a forward inference
operation, and have a priority one greater than the message that preceded it.

backward-infer. When it is necessary for the system to determine whether a node
can be derived, backward-infer messages are used to open channels to rules that
node may be the consequent of, or, if the node is a rule node, to open channels of
antecedents to derive the rule. These messages set up a backward inference operation by
passing backward through channels and opening any valves they reach. In a backward
inference operation, these messages are generally sent recursively backward through the
network until valves are reached which have waiting i-infer or u-infermessages.
The priority of these messages is lower than any inference tasks which may take place.
This allows any messages waiting at the valves to flow forward immediately and begin
inferring new formulas towards the goal of the backward inference operation.

cancel-infer. Inference can be canceled either in whole by the user or in part by
a rule which determines that it no longer needs to know the assertional status of some
of its antecedents.5 cancel-infer messages are sent from some node backward
through the graph. These messages are generally sent recursively backward through
the network to prevent unnecessary inference. These messages cause valves to close as
they pass through, and cancel any backward-infer messages scheduled to re-open
those same valves, halting inference. cancel-infermessages always have a priority
higher than any inference task.

unassert. Each formula which has been derived in the graph has one or more sets of
support. For a formula to remain asserted, at least one of its support sets must have all of

4 For example a rule representing the exclusive or of a and b could tell b that it is true when it
learns that a is false, or could tell b that it is false when it learns that a is true.

5 We recognize that this can, in some cases, prevent the system from automatically deriving a
contradiction.
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its formulas asserted as well. When a formula is unasserted by a human (or, eventually,
by belief revision), a message must be sent forward through the graph to recursively
unassert any formulas which have the unasserted formula in each of their support sets,
or is the consequent of a rule which no longer has the appropriate number of positive
or negative antecedents. unassert messages have top priority, effectively pausing all
other inference, to help protect the consistency of the knowledge base.

3.2 Rule Node Inference

Inference operations take place in the rule nodes. When an i-infer message arrives
at a rule node the message is translated into Rule Use Information, or RUI [2]. A RUI
is defined as:

< pos , neg,flaggedNS , support >

where pos and neg are the number of known true (“positive”) and negated (“negative”)
antecedents of the rule, respectively; the flaggedNS is the flagged node set, which con-
tains a mapping from each antecedent with a known truth value to its truth value, and
support is the set of support, the set of formulas which must be true for the assertional
statuses in the flaggedNS to hold.

All RUIs created at a node are cached. When a new one is made, it is combined with
any already existing ones – pos and neg from the RUIs are added and the set of support
and flagged node set are combined. The output of the combination process is a set of
new RUIs created since the message arrived at the node. The pos and neg portions of
the RUIs in this set are used to determine if the rule node’s inference rules can fire.
A disadvantage of this approach is that some rules are difficult, but not impossible, to
implement, such as negation introduction and proof by cases. For us, the advantages in
capability outweigh the difficulties of implementation. If the RUI created from a mes-
sage already exists in the cache, no work is done. This prevents re-derivations, and can
cut cycles. When a rule fires, new u-infer messages are sent to the rule’s conse-
quents, informing them whether they should be asserted or negated.

Figure 3 shows the process of deriving f in our initial example. We assume back-
ward inference has been initiated, opening all the valves in the graph. First, in Fig. 3a,
messages about the truth of a, b, and c flow through i-channels to wft1. Since wft1
is and-entailment, each of its antecedents must be true for it to fire. Since they are, in
Fig. 3b the message that d is true flows through wft1’s u-channel. d becomes asserted
and reports its new status through its i-channel (Fig. 3c). In Fig. 3d, wft2 receives this
information, and since it is an or-entailment rule and requires only a single antecedent
to be true for it to fire, it reports to its consequents that they are now true, and cancels
inference in e. Finally, in Fig. 3e, f is asserted, and inference is complete.

3.3 Inference Segments

The inference graph is divided into inference segments (henceforth, segments). A seg-
ment represents the operation – from receipt of a message to sending new ones – which
occurs in a node. Valves delimit segments, as seen in Fig. 4. The operation of a node
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Fig. 3. a) Messages are passed from a, b, and c to wft1. b) wft1 combines the messages from
a, b, and c to find that it has 3 positive antecedents, of a total of 3. The and-entailment can fire,
so it sends a message through its u-channel informing its consequent, d, that it has been derived.
c) d receives the message that it is asserted and sends messages through its i-channel. d) wft2
receives the message that d is asserted. Only one true antecedent is necessary for or-entailment
elimination, so it sends a message through its u-channels that its consequent, f, is now derived.
It also cancels any inference in its other antecedents by sending a cancel-infer message to
e. e) f is derived.
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is different depending on the type of message that node is currently processing. The
collection of operations performed within an inference segment is what we call the
segment’s inference function.

Only a rule node can ever receive an i-infer message, since i-infer mes-
sages only flow across i-channels, built from rule antecedents to the rule itself. When
a rule node receives an i-infer message, the rule performs the operation discussed
in Sec. 3.2. On the other hand, any node may receive a u-infer message. When a
u-infer message is processed by a node, the node asserts itself to be true or negated
(depending on the content of the u-infer message), and sends new i-infer mes-
sages through any of its outgoing i-channels to inform any rule nodes the node is an
antecedent of of it’s new assertional status.

When a backward-infer message is processed by a node, all of that node’s
incoming channels which do not originate at the source of the backward-infer
message are opened. This act causes messages waiting at the now-opened valves to
flow forward. In addition, backward-infermessages are sent backward along each
of the newly-opened channels which did not have i- or u-infer messages waiting
at their valves.

Messages which cancel inference – cancel-infer messages – are processed
somewhat similarly to backward-infer messages, but with the opposite effect. All
of the node’s incoming channels which do not originate at the source of the cancel-
infermessage are closed (if they’re not already), as long as the node’s outgoing chan-
nels are all closed. cancel-infer messages are sent backward along each of the
newly-closed channels.

The last type of message, unassert messages, are processed by unasserting the
node, and sending new unassert messages along all outgoing channels which ter-
minate at nodes which either have the unasserted formula in each of their support sets,
or are the consequent of a rule which no longer has the appropriate number of positive
or negative antecedents. unassert messages do not wait at valves, since they are of
critical importance to maintaining the consistency of the KB.

It’s important to note that none of these operations ever requires a node to build new
channels. Channels are built when nodes are added to the graph, and all such channels
which can be built are built at that time. When a node is made true or negated by a user,
i-infermessages are automatically sent out each of its i-channels. If a new i-channel
is created by the addition of a new rule to the KB, an appropriate i-infer message is
automatically submitted to that channel if the origin is true or negated.

wft1!
Valve

... ...
Valve

Inference Segment

Fig. 4. A single inference segment is shown in the gray bounding box



Concurrent Reasoning with Inference Graphs 147

4 Concurrent Reasoning

The inference graph’s structure lends itself naturally to concurrent inference. It is clear
in our initial example that if inference were required to derive a, b, and c that each
of those inference tasks could be running concurrently. After each of a, b, and c were
asserted, messages would be sent to wft1, as in our example. The RUIs generated
from the messages would then need to be combined. Since there is shared state (the
RUI cache) we perform the combination of RUIs synchronously using Clojure’s Soft-
ware Transactional Memory, guaranteeing we don’t “lose” results. We need not concern
ourselves with the actual order in which the RUIs are combined, since the operation is
commutative, meaning we don’t need to maintain a queue of changes to the RUI cache.

In addition to the RUI cache, we must also update the set of asserted formulas when-
ever a formula is newly derived. We use the same technique as above for this, again
recognizing that the order in which formulas are asserted is not important. It is possi-
ble to perform these assertions in a thread outside of the inference task, but tests show
no advantage in doing so,6 especially in the case where we have as many (or more)
inference threads as CPUs.

In order to perform inference concurrently, we aim to execute the inference functions
of multiple segments at the same time, and do so in an efficient manner through the use
of scheduling heuristics. A task is the application of a segment’s inference function to
a message. Tasks are created whenever a message passes the boundary between seg-
ments. For i-infer and u-infer messages, that’s when they pass through a valve,
or for unassert messages when they ignore a valve. For the backward-infer
and cancel-infer messages it’s when they cross a valve backward. When tasks are
created they enter a global prioritized queue, where the priority of the task is the pri-
ority of the message. The task which causes a message to cross between segments is
responsible for creating the new task for that message and adding it to the queue. When
the task is executed, the appropriate operation is performed as described above, and any
newly generated messages allow the process to repeat.

4.1 Scheduling Heuristics

The goal of any inference system is to infer the knowledge requested by the user. If we
arrange an inference graph so that a user’s request (in backward inference) is on the
right, and channels flow from left to right wherever possible (the graph may contain
cycles), we can see this goal as trying to get messages from the left side of the graph to
the right side of the graph. We, of course, want to do this as quickly as possible.

Every inference operation begins processing messages some number of levels to the
left of the query node. Since there are a limited number of tasks which can be running

6 This can actually reduce performance by causing introduction rules to fire more than once.
Consider two i-infer messages arriving at an unasserted rule node nearly simultaneously.
Assume the first message triggers the rule’s introduction. The rule requests, asynchronously,
to be asserted, then sends appropriate messages through the its i- and u-channels. The second
message arrives, but the node’s assertion request has not completed yet, causing duplication of
work. This can happen (rarely) in the current concurrency model, but is far more likely when
it’s uncertain when the actual assertion will occur.
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at once due to hardware limitations, we must prioritize their execution, remove tasks
which we know are no longer necessary, and prevent the creation of unnecessary tasks.
Therefore,

1. tasks for relaying newly derived information using segments to the right are exe-
cuted before those to the left,

2. once a node is known to be true or false, all tasks still attempting to derive it are
canceled, as long as their results are not needed elsewhere, and all channels pointing
to it which may still derive it are closed.

3. once a rule fires, all tasks for potential antecedents of that rule still attempting to
satisfy it are canceled, as long as their results are not needed elsewhere, and all
channels from antecedents which may still satisfy it are closed.

Together, these three heuristics ensure that messages reach the query as quickly
as possible, and time is not wasted deriving unnecessary formulas. The priorities of
the messages (and hence, tasks) allow us to reach these goals. All unassert mes-
sages have the highest priority, followed by all cancel-infermessages. Then come
i-infer and u-infer messages. backward-infer messages have the lowest
priority. As i-infer and u-infer messages flow to the right, they get higher pri-
ority, but their priorities remain lower than that of cancel-infer messages. In
forward inference, i-infer and u-infer messages to the right in the graph al-
ways have higher priority than those to the left, since the messages all begin flowing
from a common point. In backward inference, the priorities of backward-infer,
and i-infer, and u-infer messages work together to derive a query formula as
quickly as possible: since backward-infer messages are of the lowest priority,
those i-infer and u-infer messages waiting at valves which are nearest to the
query formula begin flowing forward before valves further away are opened. This,
combined with the increasing priority of i-infer and u-infer messages ensure
efficient derivation. In short, the closest possible path to the query formula is always
attempted first in backward inference.

The usefulness of cancel-infer can be seen if you consider what would happen
in the example in Fig. 3 if e were also asserted. Remember that the cancel-infer
messages close valves in channels they passes through, and are passed backward further
when a node has received the same number of cancellation messages as it has outgoing
channels. In this example, backward inference messages would reach wft2, then d and
e. The message that e is asserted would flow forward through e’s i-channel to wft2,
which would in turn both send a message resulting in the assertion of f, and cancel
inference going on further left in the graph, cutting off wft1’s inference since it is now
unnecessary.

The design of the system therefore ensures that the tasks executing at any time are the
ones closest to deriving the goal, and tasks which will not result in useful information
towards deriving the goal are cleaned up. Additionally, since nodes “push” messages
forward through the graph instead of “pulling” from other nodes, it is not possible to
have tasks running waiting for the results of other rule nodes’ tasks. Thus, deadlocks are
impossible, and bottlenecks can only occur when multiple threads are making additions
to shared state simultaneously.
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5 An Illustrative Example

The initial example we have discussed thus far was useful for gaining an initial under-
standing of the inference graphs, but it is not sophisticated enough to show several inter-
esting properties of the graphs. The following example shows how the inference graph
can be used for rule introduction, deriving negations, the use of ground predicates, and
the set-oriented logical connectives such as andor, xor, and iff discussed in Sect. 2.

Inspired by L. Frank Baum’s The Wonderful Wizard of Oz [1], we consider a scene
in which Dorothy and her friends are being chased by Kalidas – monsters with the head
of a tiger and the body of a bear. In the world of Oz, whenever Toto becomes scared,
Dorothy carries him, and that’s the only time she carries him. If Toto walks, he is not
carried, and if he is carried, he does not walk. Toto becomes scared when Dorothy is
being chased. Since Dorothy has only two hands, she is capable of either carrying the
Scarecrow (who is large, and requires both hands), or between 1 and 2 of the following
items: Toto, her full basket, and the Tin Woodman’s oil can. In our example, the Tin
Woodman is carrying his own oil can. Only one of Dorothy, the Scarecrow, or the Tin
Woodman can carry the oil can.

The relevant parts of this scene are represented below in their logical forms.

;;; Dorothy can either carry the scarecrow,
;;; or carry one or two objects from the list:
;;; her full basket, Toto, oil can.
(xor (Carries Dorothy Scarecrow)

(andor (1 2) (Carries Dorothy FullBasket)
(Carries Dorothy Toto)
(Carries Dorothy OilCan)))

;;; Either Dorothy, the Tin Woodman, or the Scarecrow
;;; carry the Oil Can.
(xor (Carries Dorothy OilCan)

(Carries TinWoodman OilCan)
(Carries Scarecrow OilCan))

;;; Either Dorothy carries Toto, or Toto walks.
(xor (Carries Dorothy Toto) (Walks Toto))

;;; Dorothy carries Toto if and only if Toto is scared.
(iff (Scare Toto) (Carries Dorothy Toto))

;;; Toto gets scared if Dorothy is being chased.
(if (Chase Dorothy) (Scare Toto))

;;; The Tin Woodman is carrying his Oil Can.
(Carries TinWoodman OilCan)
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;;; Dorothy is being chased.
(Chase Dorothy)

We can then wonder, “Is Dorothy carrying the Scarecrow?” According to the rules
of these connectives, as discussed in Section 2, we should be able to derive that this is
not the case. This can be derived by hand as follows:

1) Since (if (Chase Dorothy) (Scare Toto))
and (Chase Dorothy),

infer (Scare Toto)
by Implication Elimination.

2) Since (iff (Carries Dorothy Toto) (Scare Toto))
and (Scare Toto)

infer (Carries Dorothy Toto)
by Equivalence Elimination.

3) Since (xor (Carries Scarecrow OilCan)
(Carries Dorothy OilCan)
(Carries TinWoodman OilCan))

and (Carries TinWoodman OilCan)
infer (not (Carries Dorothy OilCan))

by Xor Elimination.
4) Since (Carries Dorothy Toto)

and (not (Carries Dorothy OilCan))
infer (andor (1 2) (Carries Dorothy FullBasket)

(Carries Dorothy OilCan)
(Carries Dorothy Toto))

by Andor Introduction.
5) Since (xor

(andor (1 2) (Carries Dorothy FullBasket)
(Carries Dorothy OilCan)
(Carries Dorothy Toto))

(Carries Dorothy Scarecrow))
and (andor (1 2) (Carries Dorothy FullBasket)

(Carries Dorothy OilCan)
(Carries Dorothy Toto))

infer (not (Carries Dorothy Scarecrow))
by Xor Elimination.

The inference graphs are able to reach the same conclusion by applying these same
rules of inference. The inference graph for the above example is displayed in Fig. 5.
Since this example makes use of ground predicate logic (instead of only proposition
symbols, as used in the initial example), we have had to define the arc labels used to
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identify the arguments of those formulas in the graph.7 The Carries relation has two
arguments, carrier and carried, where the carrier is the entity carrying the
carried object. The Walks relation has only the selfMover argument – the entity
doing the walking. Both the Chase and Scare relations have only one argument. The
Chase relation has a theme – the one being chased – and the Scare relation has an
experiencer – the one who becomes scared. In order to make it clear in the graph
what the act the theme or experiencer is involved in, we add an additional arc
labeled act pointing to a node whose symbol is the relation name.8

In Fig. 5, wft6 represents the proposition that either Dorothy carries the Scarecrow
(wft1), or wft5, that Dorothy carries between 1 and 2 of the items: the oil can (wft2),
her full basket (wft3), and Toto (wft4). wft2, wft8 and ,wft9 respectively repre-
sent the propositions that Dorothy, the Scarecrow, and the Tin Woodman carry the oil
can, and wft10 is the exclusive disjunction of those formulas. The exclusive-or rule
node wft14 represents the proposition that either Toto walks (wft13) or Toto is car-
ried by Dorothy (wft4). wft12 expresses that Dorothy carries Toto (wft4) if and
only if Toto is scared (wft11). Finally, the relation expressing that if Dorothy is being
chased (wft15), then Toto is scared (wft13) is represented by wft16. Notice that,
as indicated by the appended “!”, wft6, wft9, wft10, wft12, wft14, wft15, and
wft16, are asserted, but none of the other wfts are.

Channels have been drawn on the graph as described earlier. Since andor and
thresh do not have pre-defined antecedents and consequents (as the various types
of entailment do), each of the arguments in one of these rules must, in the inference
graph, have an i-channel drawn from the argument to the rule, and a u-channel drawn
from the rule to the argument. This way each argument can inform the rule when it has
a new assertional status, and the rule can inform each argument about a new assertional
status it should adopt based on the rule firing.

For the purposes of this example, we will make two assumptions: first that there are
two processors being used (a and b), and second that any two tasks which begin on the
two CPUs simultaneously, end at the same time as well. Figure 6 shows the first set
of processing steps used in the derivation. Processing steps in this figure are labeled
one through five, with “a” and “b” appended to the label where necessary to denote the
CPU in use for ease of reference to the diagram. The step labels are placed at the nodes,
since a task stretches from valve-to-valve, encompassing a single node. We’ll discuss
the inference process as if the nodes themselves are added to the task queue for easier
reading, when what we really mean is that tasks created for the inference process of a
node, applied to a message, are added to the task queue.

The steps illustrated in Fig. 6 consist mostly of backward inference. The backward
inference begins at the query, wft1, and continues until some channel is opened which
contains an i-infer or u-infer message. In this example, this happens first at
wft10, in step 5b of the figure. Listed below are the details of the processing which

7 A KR formalism can be seen simultaneously as graph-, frame-, and logic-based. In our system,
we define caseframes which have a number of slots, corresponding to argument positions in
the logical view. The names of those slots are what decide the arc labels. See [15] for more
details.

8 The relations used here are based upon entries in the Unified Verb Index [22].
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Fig. 5. The inference graph intended to mean that either Dorothy can carry the Scarecrow, or she
can carry one or two of the following: Toto, her full basket, and the Tin Woodman’s oil can; only
one of the Scarecrow, the Tin Woodman, or Dorothy can carry the oil can; Dorothy carries Toto
when, and only when, Toto is scared; Toto is either carried by Dorothy, or walks; if Dorothy is
being chased, then Toto is scared; Dorothy is being chased; and the Tin Woodman is carrying his
oil can

occurs during each step shown in the figure, along with the contents of the task queue.
Tasks in the task queue are displayed in the following format:

<wftSrc −X → wftDest>

where wftSrc is the source of the message which caused the creation of the task,
wftDest is the node the task is operating within, and X is one of i,u,b, or c standing
for the type of message the task processes, i-infer,u-infer, backward-infer,
or cancel-infer. The unassert message type is not used in this example, and
therefore was not listed.
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Fig. 6. The first five steps of inference when attempting to derive whether Dorothy is carrying
the Scarecrow. Channels with a heavier weight and slightly larger arrows have had their channels
opened through backward inference. Two processors are assumed to be used – a and b – and
for this reason some steps in the graph have “a” or “b” appended to them. In these five steps,
backward-infermessages flow backward through the graph until the first channel is reached
with messages which will flow forward: the fact that wft9 is asserted will flow to wft10 since
the i-channel connecting them has just been opened through backward inference.

1 wft1 sends backward-infer message to wft6!;
opens the channel from wft6! to wft1.

task queue <wft1 −b → wft6!>
2 wft6! sends backward-infer message to wft5;

opens the channel from wft5 to wft6!.
task queue <wft6! −b → wft5>
3 wft5 sends backward-infer messages to wft2, wft3, and wft4;

opens the channels from wft2, wft3, and wft4 to wft5.
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task queue <wft5 −b → wft2>, <wft5 −b → wft3>, <wft5 −b → wft4>
4a wft2 sends backward-infer message to wft10!;

opens the channel from wft10! to wft4.
4b wft3 has no channels to open.
task queue <wft5 −b → wft4>, <wft2 −b → wft10!>
5a wft4 sends backward-infer messages to wft12! and wft14!;

opens the channels from wft12! and wft14! to wft4.
5b wft10! sends backward-infer messages to wft8 and wft9!;

opens the channels from wft8 and wft9! to wft10!.
Since wft9! is asserted, there is an i-infer message already waiting in the
channel from wft9! to wft10!with higher priority than any backward inference
tasks. That i-infermessage is moved across the valve, and a new task is created
for it – causing wft10! to be added to the front of the queue again. Since there
was an i-infer message waiting at the opened valve from wft9! to wft10!,
the backward-infer task just queued to occur in wft9! is canceled, as it is
unnecessary.

task queue <wft9! −i → wft10!>, <wft4 −b → wft12!>,
<wft4 −b → wft14!>, <wft10! −b → wft8>

Remember that no backward-infer messages are sent to nodes which are al-
ready part of the derivation. For example, wft10 does not send a backward-infer
message back to wft2 since wft2 is already part of the current derivation. This pre-
vents eventual unnecessary derivations.

Figure 7 shows the next series of inference steps. In these steps the truth of wft9
is used to infer the negation of wft2, that Dorothy is not carrying the oil can (cor-
responding to step 3 in the earlier manual derivation), and relays this information to
wft5. Backward inference continues from wft14 and wft12 back to wft13 and
wft15, respectively. This is, again, the point where an i-infer message is ready to flow
forward, this time from wft15 to wft16. Below we have once again described these
processing steps in detail.

6a wft10! receives i-infer message from wft9!;
derives that both wft2 and wft8 are negated, by the rules of xor;
sends u-infer messages to both wft2 and wft8 telling them they are negated
(of which, only the message to wft2 will pass through an open channel);
cancels any inference in progress or queued to derive wft8, since it is the only
antecedent still attempting to satisfy wft10!.

6b wft12! sends backward-infer message to wft11;
opens the channel from wft11 to wft12!.

task queue <wft10!−c → wft8>, <wft10! −u → wft2>,
<wft4 −b → wft14!>, <wft12! −b → wft11>

7a wft8 has no channels to close.
7b wft2 receives u-infer message from wft10!;

asserts that it itself is negated (wft17!);
sends an i-infer message along the channel to wft5, telling wft5 that wft2
has been derived to be false.
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Fig. 7. Steps six through ten of the attempted derivation of whether Dorothy is carrying the Scare-
crow. In steps 6b, 8b, 9a, 9b, and 10 backward inference is performed until the i-infer mes-
sage indicating wft15 is true might flow forward across it’s i-channel to wft16. Additionally,
wft10 receives an i-infer message about the truth of wft9 (step 6a), which derives that
wft2 is false through xor-elimination. wft2 then reports this (step 7b) to wft5, which records
this information (step 8a), but cannot yet do anything else.

task queue <wft2 −i → wft5>, <wft4 −b → wft14!>,
<wft12!−b → wft11>

8a wft5 receives i-infer message from (the negated) wft2. Since wft5 requires
more information to determine if between 1 and 2 of its arguments are true, no more
can be done.

8b wft14! sends backward-infer message to wft13;
opens the channel from wft13 to wft14!.

task queue <wft12!−b → wft11>, <wft14!−b → wft13>
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9a wft11 sends backward-infer message to wft16!;
opens the channel from wft16! to wft11.

9b wft13 has no channels to open.
task queue <wft11 −b → wft16!>
10 wft16! sends backward-infer messages to wft15!;

opens the channel from wft15! to wft16!. Since wft15! is asserted, there is
an i-infer message waiting in the channel from wft15! to wft16!, which
flows forward creating a new task to operate on wft16!, added at the front of the
queue.

task queue <wft15!−i → wft16!>

Figure 8 illustrates the conclusion of the derivation that Dorothy is not carrying the
Scarecrow. In this final series of inference steps, it is derived that Toto is scared (wft11,
step 1 from the manual derivation), that Dorothy carries Toto (wft4, step 2 from the
manual derivation), that Dorothy carries one or two of the items from the list of: her
full basket, the oil can, and Toto (wft5, step 4 from the manual derivation), and that
Dorothy does not carry the Scarecrow (wft18, step 5 from the manual derivation). The
final set of inference steps are below.

11 wft16! receives i-infer message from wft15!;
derives wft11 by the rules of entailment elimination;
sends u-infer message to wft11 telling it that wft11 is true.

task queue <wft16!−u → wft11>
12 wft11 receives u-infer message from wft16!;

asserts itself;
sends i-infer message to wft12! telling it that wft11! has been derived.

task queue <wft11!−i → wft12!>
13 wft12! receives i-infer message from wft11!;

derives wft4 by the rules of equivalence elimination;
sends u-infer message to wft4 telling it that wft4 is true.

task queue <wft12!−u → wft4>
14 wft4 receives the u-infer message from wft12!;

asserts itself;
sends i-infer message to wft5 telling it that wft4! has been derived;
sends a cancel-infer message to wft14!.

task queue <wft4! −c → wft14!>, <wft4! −i → wft5>
15a wft14! receives cancel-infer message from wft4!;

sends a cancel-infer message to wft13.
15b wft5 receives the i-infer message from wft4!;

derives itself through andor introduction, since between 1 and 2 of its antecedents
must be true;
sends an i-infer message to wft6!. sends a cancel-infer message to
wft3.

task queue <wft5! −c → wft3>, <wft14! −c → wft13>,
<wft5! −i → wft6!>

16a wft3 has no channels to close.
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Fig. 8. The conclusion of the derivation that Dorothy is not, in fact, carrying the Scarecrow. Since
wft15 is true (the fact that Dorothy is being chased), it is reported to wft16 (step 11), which
fires and sends u-infer messages to its consequent – wft11. wft11, in step 12, reports
its new truth value to wft12 which fires (step 13), since it is an if-and-only-if, and sends a
u-infer message to wft4. Since wft4 is now true, it cancels other inference attempting to
derive it and reports its truth to wft5 (step 14). Simultaneously, wft14 continues canceling
inference (step 15a), and wft5 is found to be true, since it required between 1 and 2 of its
antecedents to hold, and that is now the case (step 15b). Unnecessary inference attempting to
derive wft5 and wft14 are canceled in steps 16a and b. Now, in step 17, wft6 receives the
message that wft5 is true (that is, Dorothy is carrying 1 or 2 items), and because it is exclusive
or, it determines that wft1 is false - Dorothy is not carrying the Scarecrow. Step 18 asserts this
fact, and reports it to the user.
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16b wft13 has no channels to close.
task queue <wft5! −i → wft6!>
17 wft6! receives i-infer message from wft5!;

derives the negation of wft1 by the rules of xor elimination;
sends u-infer message to wft1 telling it that wft1 is false.

task queue <wft6! −u → wft1>
18 wft1 receives u-infer message from wft6!;

asserts the negation of itself (wft18!);
informs the user that the negation of the query is true.

task queue empty

Inference is now complete, and any channels which remain open can be closed.

6 Evaluation

The massively parallel logical inference systems of the 1980s and 90s often assigned
each processor a single formula or rule to be concerned with. This resulted in limits on
the size of the KB (bounded by the number of processors), and many processors sitting
idle during any given inference process. Our technique dynamically assigns tasks to
threads only when they have work to do, meaning that processors are not sitting idle so
long as there are as many tasks available as there are processors.

In evaluating the performance of the inference graph, we are mostly concerned with
the speedup achieved as more processors are used in inference. While overall processing
time is also important, if speedup is roughly linear with the number of processors, that
will show that the architecture and heuristics discussed scale well. We will look at the
performance of our system in both backward and forward inference. The other two types
of inference – bi-directional inference, and focused reasoning – are hybrids of forward
and backward inference, and have performance characteristics between the two.

6.1 Backward Inference

To evaluate the performance of the inference graph in backward inference, we generated
graphs of chaining entailments. Each entailment had bf antecedents, where bf is the
branching factor, and a single consequent. Each consequent was the consequent of ex-
actly one rule, and each antecedent was the consequent of another rule, up to a depth of
d entailment rules. Exactly one consequent, cq , was not the antecedent of another rule.
Therefore there were bf d entailment rules, and 2∗bf d−1 antecedents/consequents. Each
of the bf d leaf nodes were asserted. We tested the ability of the system to backchain on
and derive cq when the entailments used were both and-entailment and or-entailment.
Backward inference is the most resource intensive type of inference the inference graphs
can perform, and most fully utilizes the scheduling heuristics developed in this paper.

In the first test we used and-entailment, meaning for each implication to derive its
consequent both its antecedents had to be true. Since we backchained on cq, this meant
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Table 1. Inference times using 1, 2, 4, and 8 CPUs for 100 iterations of and-entailment in an
inference graph with d = 10 and bf = 2 in which all 1023 rule nodes must be used to infer the
result

CPUs Inference Time (ms) Speedup
1 37822 1.00
2 23101 1.64
4 15871 2.39
8 11818 3.20

every node in the graph would have to become asserted. This is the worst case scenario
for entailment. The timings we observed are presented in Table 1.9

In increasing the number of usable CPUs from 1 to 2, we achieve nearly double the
performance. As we increase further, there is still a benefit, but the advantage begins
to drop off. The primary reason for this is that 1023 formulas must be asserted to the
KB, and this requires maintenance of shared state. Only one thread can modify the
shared state at a time, and so we handle it synchronously (as explained in Sect. 4). We
found 100 iterations of asserting 1023 formulas which had already been built, as in the
case of this test, took approximately 7500ms, regardless of the number of CPUs used.
Excluding this from each of the times in Table 1 reveals a close-to-halving trend every
time the number of CPUs is doubled, as would be expected (See Table 2).

Table 2. The results from Table 1, excluding the time (7500ms) for assertions

CPUs Inference−Assert Time (ms) Speedup
1 30322 1.00
2 15601 1.94
4 8371 3.62
8 4318 7.02

We then tried to determine whether the depth or branching factor of the graph has
any effect on speedup as the number of processors increases. We first ran an exper-
iment to judge the impact of graph depth. We ran the experiment on graphs of five
different depths, ranging from 5 to 15 (32 leaves, to 32,768 leaves), while maintaining
bf = 2 (see Fig. 9), and found that as graph depth is increased, speedup increases very
slowly. Since this increase must be bounded (we have no reason to believe a more-than-
doubling speedup is possible), we have fit logarithmic trendlines to the 2, 4, and 8 CPU
data, and found R2 values to suggest a strong fit.

To find out if branching factor affects speedup, we chose d = 7 (128 leaves, 127 rule
nodes), and varied the branching factor from 1 to 4. When bf = 1, the graph is simply

9 All tests were performed on a Dell Poweredge 1950 server with dual quad-core Intel Xeon
X5365 processors (no Hyper-Threading) and 32GB RAM. Each test was performed twice,
with the second result being the one used here. The first run was only to allow the JVM to
“warm up.”



160 D.R. Schlegel and S.C. Shapiro

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 5  6  7  8  9  10  11  12  13  14  15

S
pe

ed
up

Graph Depth

Speedup as Graph Depth Increases
1 CPU

2 CPUs
2 CPU Log Fit

4 CPUs
4 CPU Log Fit

8 CPUs
8 CPU Log Fit y(x) = 0.626ln(x) + 5.522, R = 0.921

y(x) = 0.212ln(x) + 3.157, R = 0.881

y(x) = 0.043ln(x) + 1.832, R = 0.714

2

2

2

Fig. 9. Speedup of the and-entailment test, shown in relation to the depth of the inference graph.
As the depth of the graph increases, speedup increases slowly but logarithmically with each num-
ber of CPUs tested. A branching factor of 2 was used in all tests.

a chain of nodes, and the use of more processors can provide no possible improvement
in computation time. In fact, as shown in Fig. 10, throwing more processors at the
problem makes things worse. Fortunately, this is a rather contrived use of the inference
graph. At branching factors 2-4, the graph performs as expected, with the branching
factor increase having little effect on performance.10 There may be a slight performance
impact as the branching factor increases, because the RUI computations happening in
the rule nodes rely on shared state, but that performance hit only occurs when two tasks
attempt to modify the RUI set of a single node simultaneously – an increasingly unlikely
event as we consider larger graphs.

In our second test we used the same KB from the first (d = 10, bf = 2), except each
and-entailment rule was swapped for or-entailment. Whereas the earlier test required
every consequent in the KB to be derived, this test shows the best case of entailment
- only a single leaf must be found to be asserted to allow the chaining causing cq to
become true.

The improvement in or-entailment processing times as we add more CPUs (see Ta-
ble 3) is not as dramatic since the inference operation performed once a chain of valves
from an asserted formula to cq are open cannot be accelerated by adding more processing

10 Because of the graph size explosion as branching factor increases, it was not possible to collect
enough data to perform a quantitative analysis, only a qualitative one.
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Fig. 10. Speedup of the and-entailment test, shown in relation to the branching factor of the
inference graph. A depth of 7 was used in all tests, to keep the number of nodes reasonable.

cores – that process is inherently sequential. By timing forward inference through the
graph, we found that approximately 340ms in each of the times in Table 3 is attributed
to the relevant inference task. The improvement we see increasing from 1 to 2, and 2
to 4 CPUs is because the backward-infer and cancel-infer messages spread
throughout the network and can be sped up through concurrency. During the periods
where backward inference has already begun, and cancel-infer messages are not
being sent, the extra CPUs were working on deriving formulas relevant to the current
query, but in the end unnecessary – as seen in the number of rule nodes fired in Table 3.
The time required to assert these extra derivations begins to outpace the improvement
gained through concurrency when we reach 8 CPUs in this task. These extra derivations
may be used in future inference tasks, though, without re-derivation, so the resources are
not wasted. As only a chain of rules are required, altering branching factor or depth has
no effect on speedup.

The difference in computation times between the or-entailment and and-entailment
experiments are largely due to the scheduling heuristics described in Sect. 4.1. Without
the scheduling heuristics, backward inference tasks continue to get executed even once
messages start flowing forward from the leaves. Additionally, more rule nodes fire than
is necessary, even in the single processor case. We ran the or-entailment test again with-
out these heuristics using a FIFO queue, and found the inference took just as long as
in Table 1. We then tested a LIFO queue since it has some of the characteristics of our
prioritization scheme (see Table 4), and found our prioritization scheme to be nearly
10x faster.
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Table 3. Inference times, and number of rule nodes used, using 1, 2, 4, and 8 CPUs for 100
iterations of or-entailment in an inference graph (d = 10, bf = 2) in which there are many paths
through the network (all of length 10) which could be used to infer the result

CPUs Time (ms) Avg. Rules Fired Speedup
1 1021 10 1.00
2 657 19 1.55
4 498 38 2.05
8 525 67 1.94

Table 4. The same experiment as Table 3 replacing the improvements discussed in Sect. 4.1, with
a LIFO queue. Our results in Table 3 are nearly 10x faster.

CPUs Time (ms) Avg. Rules Fired Speedup
1 12722 14 1.00
2 7327 35 1.77
4 4965 54 2.56
8 3628 103 3.51

Table 5. Inference times using 1, 2, 4, and 8 CPUs for 100 iterations of forward inference in an
inference graph of depth 10 and branching factor 2 in which all 1024 leaf nodes are derived. Each
result excludes 7500ms for assertions, as discussed in Sect. 6.1.

CPUs Inference−Assert Time (ms) Speedup
1 30548 1.00
2 15821 1.93
4 8234 3.71
8 4123 7.41

6.2 Forward Inference

To evaluate the performance of the inference graph in forward inference, we again gen-
erated graphs of chaining entailments. Each entailment had a single antecedent, and 2
consequents. Each consequent was the consequent of exactly one rule, and each an-
tecedent was the consequent of another rule, up to a depth of 10 entailment rules. Ex-
actly one antecedent, ant , the “root”, was not the consequent of another rule. There
were 1024 consequents which were not antecedents of other rules, the leaves. We tested
the ability of the system to derive the leaves when ant was asserted with forward
inference.

Since all inference in our graphs is essentially forward inference (modulo additional
message passing to manage the valves), and we’re deriving every leaf node, we expect
to see similar results to the and-entailment case of backward inference, and we do, as
shown in Table 5. The similarity between these results and Table 2 shows the relatively
small impact of sending backward-infer messages, and dealing with the shared
state in the RUIs. Excluding the assertion time as discussed earlier, we again show a
near doubling of speedup as more processors are added to the system. In fact, altering
the branching factor and depth also result in speedups very similar to those from Figs. 9
and 10.
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7 Conclusions

Inference graphs are an extension of propositional graphs capable of performing natural
deduction using forward, backward, bi-directional, and focused reasoning within a con-
current processing system. Inference graphs add channels to propositional graphs, built
along the already existing edges. Channels carry prioritized messages through the graph
for performing and controlling inference. The priorities of messages influence the order
in which tasks are executed – ensuring that the inference tasks which can derive the
user’s query most quickly are executed first, and irrelevant inference tasks are canceled.
The heuristics developed in this paper for prioritizing and scheduling the execution of
inference tasks improve performance in backward inference with or-entailment nearly
10x over just using LIFO queues, and 20-40x over FIFO queues. In and-entailment
using backward inference, and in forward inference, our system shows a near linear
performance improvement with the number of processors (ignoring the intrinsically se-
quential portions of inference), regardless of the depth or branching factor of the graph.
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