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Abstract
Since their popularity began to rise in the mid-
2000s there has been significant growth in the
number of multi-core and multi-processor com-
puters available. Knowledge representation sys-
tems using logical inference have been slow to em-
brace this new technology. We present the con-
cept of inference graphs, a natural deduction in-
ference system which scales well on multi-core
and multi-processor machines. Inference graphs
enhance propositional graphs by treating proposi-
tional nodes as tasks which can be scheduled to
operate upon messages sent between nodes via the
arcs that already exist as part of the propositional
graph representation. The use of scheduling heuris-
tics within a prioritized message passing architec-
ture allows inference graphs to perform very well
in forward, backward, bi-directional, and focused
reasoning. Tests demonstrate the usefulness of our
scheduling heuristics, and show significant speedup
in both best case and worst case inference scenarios
as the number of processors increases.

1 Introduction
Since at least the early 1980s there has been an effort to paral-
lelize algorithms for logical reasoning. Prior to the rise of the
multi-core desktop computer, this meant massively parallel
algorithms such as that of [Dixon and de Kleer, 1988] on the
(now defunct) Thinking Machines Corporation’s Connection
Machine, or using specialized parallel hardware which could
be added to an otherwise serial machine, as in [Lendaris,
1988]. Parallel logic programming systems designed during
that same period were less attached to a particular parallel ar-
chitecture, but parallelizing Prolog (the usual goal) is a very
complex problem [Shapiro, 1989], largely because there is no
persistent underlying representation of the relationships be-
tween predicates. Parallel Datalog has been more successful
(and has seen a recent resurgence in popularity [Huang et al.,
2011]), but is a much less expressive subset of Prolog. Recent
work in parallel inference using statistical techniques has re-
turned to large scale parallelism using GPUs, but while GPUs
are good at statistical calculations, they do not do logical in-
ference well [Yan et al., 2009].

We present inference graphs [Schlegel and Shapiro, 2013],
a graph-based natural deduction inference system which lives
within a KR system, and is capable of taking advantage of
multiple cores and/or processors using concurrent processing
techniques rather than parallelism [The Joint Task Force on
Computing Curricula et al., 2013]. We chose to use natural
deduction inference, despite the existence of very well per-
forming refutation based theorem provers, because our sys-
tem is designed to be able to perform forward inference, bi-
directional inference [Shapiro et al., 1982], and focused rea-
soning in addition to the backwards inference used in resolu-
tion. Natural deduction also allows formulas generated dur-
ing inference to be retained in the KB for later re-use, whereas
refutation techniques always reason about the negation of the
formula to be derived, making intermediate derivations in-
valid. In addition, our system is designed to allow formulas
to be disbelieved, and to propagate that disbelief to dependent
formulas. We believe inference graphs are the only concur-
rent inference system with all these capabilities.

Inference graphs are, we believe, unique among logical in-
ference systems in that the graph representation of the KB is
the same structure used for inference. Because of this, the in-
ference system needn’t worry about maintaining synchronic-
ity between the data contained in the inference graph, and
the data within the KB. This contrasts with systems such as
[Wachter and Haenni, 2006] which allow queries to be per-
formed upon a graph, not within it. More similar to our ap-
proach is that of Truth Maintenance Systems [Doyle, 1979]
(TMSes), which provide a representation of knowledge based
on justifications for truthfulness. The TMS infers within itself
the truth status of nodes based on justifications, but the justifi-
cations themselves must be provided by an external inference
engine, and the truth status must then be reported back to the
inference engine upon request.

Drawing influences from multiple types of TMS [Doyle,
1979; de Kleer, 1986; McAllester, 1990], RETE networks
[Forgy, 1982], and Active Connection Graphs [McKay and
Shapiro, 1981], and implemented in Clojure [Hickey, 2008],
inference graphs are an extension of propositional graphs al-
lowing messages about assertional status and inference con-
trol to flow through the graph. The existing arcs within
propositional graphs are enhanced to carry messages from an-
tecedents to rule nodes, and from rule nodes to consequents.
A rule node in an inference graph combines messages and



carries out introduction and elimination rules to determine if
itself or its consequents are true or negated.

In Section 2 we review propositional graphs and introduce
a running example, followed by our introduction to inference
graphs in Section 3. Section 4 explains how the inference
graphs are implemented in a concurrent processing system.
We evaluate the implementation in Section 5 and finally con-
clude with Section 6.

2 Propositional Graphs
Propositional graphs in the tradition of the SNePS family
[Shapiro and Rapaport, 1992] are graphs in which every well-
formed expression in the knowledge base, including indi-
vidual constants, functional terms, atomic formulas, or non-
atomic formulas (which we will refer to as “rules”), is rep-
resented by a node in the graph. A rule is represented in the
graph as a node for the rule itself (henceforth, a rule node),
nodes for the argument formulas, and arcs emanating from
the rule node, terminating at the argument nodes. Arcs are la-
beled with an indication of the role the argument plays in the
rule, itself. Every node is labeled with an identifier. Nodes
representing individual constants, proposition symbols, func-
tion symbols, or relation symbols are labeled with the symbol
itself. Nodes representing functional terms or non-atomic for-
mulas are labeled wfti, for some integer, i.1 No two nodes
represent syntactically identical expressions; rather, if there
are multiple occurrences of one subexpression in one or more
other expressions, the same node is used in all cases.

In this paper, we will limit our discussion to inference
over formulas of Propositional Logic.2 Specifically, we have
implemented introduction and elimination rules for the set-
oriented connectives andor, and thresh [Shapiro, 2010],
and the elimination rules for numerical entailment. The
andor connective, written (andor (i j) p1...pn), 0 ≤ i ≤
j ≤ n, is true when at least i and at most j of p1...pn are true
(that is, an andor may be introduced when those conditions
are met). It generalizes and, or, nand, nor, xor, and not.
For the purposes of andor-elimination, each of p1...pn may
be treated as an antecedent or a consequent, since when any
j formulas in p1...pn are known to be true (the antecedents),
the remaining formulas (the consequents) can be inferred to
be negated. For example with xor, for which i = j = 1,
a single true formula causes the rest to become negated, and
if all but one are found to be negated, the remaining one can
be inferred to be true. The thresh connective, the negation
of andor, is mainly used for equivalence (iff). Numeri-
cal entailment is a generalized entailment connective, written
{a1...an}i→{c1...cm} where at least i of the antecedents,
a1...an, must be true for all of the consequents, c1...cm, to be
true. The examples and evaluations in this paper will make
exclusive use of two special cases of numerical entailment –
or-entailment, where i = 1, and and-entailment, where i = n
[Shapiro and Rapaport, 1992].

1“wft” rather than “wff” for reasons that needn’t concern us in
this paper.

2Though the system is designed to be extended to a logic with
quantified variables in the future.

For a running example, we will use two rules, one using an
and-entailment and one using an or-entailment: {a, b, c}
∧→ d, meaning that whenever a, b, and c are true then d
is true; and {d, e} ∨→ f, meaning that whenever d or e
is true then f is true. In Figure 1 wft1 represents the and-
entailment {a, b, c} ∧→ d. The identifier of the rule
node wft1 is followed by an exclamation point, “!”, to indi-
cate that the rule (well-formed formula) is asserted – taken to
be true. The antecedents, a, b, and c are connected to wft1
by arcs labeled with ∧ant, indicating they are antecedents of
an and-entailment. An arc labeled cq points from wft1 to d,
indicating d is the consequent of the rule. wft2 represents
the or-entailment {d, e} ∨→ f. It is assembled in a simi-
lar way to wft1, but the antecedents are labeled with ∨ant,
indicating this rule is an or-entailment. While much more
complex examples are possible, we stick to this rather sim-
plistic one since it illustrates the concepts presented in this
paper without burdening the reader with the details of the,
perhaps less familiar, andor and thresh connectives.

wft1! wft2!
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Figure 1: Propositional graph for the assertions that if a, b,
and c are true, then d is true, and if d or e are true, then f is
true.

The propositional graphs are fully indexed, meaning that
not only can the node at the end of an arc be accessed from the
node at the beginning of the arc, but the node at the beginning
of the arc can be accessed from the node at the end of the arc.
For example, it is possible to find all the rule nodes in which
d is a consequent by following cq arcs backwards from node
d (We will refer to this as following the reverse cq arc.), and
it is possible to find all the or-entailment rule nodes in which
d is an antecedent by following reverse ∨ant arcs from node
d.

3 Inference Graphs

Inference graphs are an extension of propositional graphs to
allow deductive reasoning to be performed in a concurrent
processing system. Unlike many KR systems which have
different structures for representation and inference, infer-
ence graphs serve as both the representation and the inference
mechanism.

To create an inference graph, certain arcs and certain re-
verse arcs in the propositional graph are augmented with
channels through which information can flow. Channels
come in two forms. The first type, i-channels, are added
to the reverse antecedent arcs. These are called i-channels
since they carry messages reporting that “I am true” or “I am
negated” from the antecedent node to the rule node. Chan-
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Figure 2: The same propositional graph from Figure 1 with
the appropriate channels added. Channels represented by
dashed lines are i-channels and are drawn from antecedents
to rule nodes. Channels represented by dotted lines are u-
channels and are drawn from rule nodes to consequents.

nels are also added to the consequent arcs, called u-channels3,
since they carry messages to the consequents which report
that “you are true” or “you are negated.” Rules are connected
by shared subexpressions, as wft1 and wft2 are connected
by the node d.

Figure 2 shows the propositional graph of Figure 1 with
the appropriate channels illustrated. i-channels (dashed arcs)
are drawn from a, b, and c to wft1, and from d, and e
to wft2. These channels allow the antecedents to report to
a rule node when it (or its negation) has been derived. u-
channels (dotted arcs) are drawn from wft1 to d and from
wft2 to f so that rule nodes can report to consequents that
they have been derived.

Each channel contains a valve. Valves enable or prevent
the flow of messages forward through the graph’s channels.
When a valve is closed, any new messages which arrive at it
are added to a waiting set. When a valve opens, messages
waiting behind it are sent through.

Inference graphs are capable of forward, backward, bi-
directional, and focused inference. In forward inference,
messages flow forward through the graph, ignoring any
valves they reach. In backward inference, messages are
sent backwards through incoming channels to open valves,
and hence other messages about assertions are allowed to
flow forward only along the appropriate paths. Normally
when backward inference completes, the valves are closed.
Focused inference can be accomplished by allowing those
valves to remain open, thus allowing messages reporting new
assertions to flow through them to answer previous queries.
Bi-directional inference can begin backward inference tasks
to determine if an unasserted rule node reached by a forward
inference message can be derived.

3.1 Messages
Messages of several types are transmitted through the infer-
ence graph’s channels, serving two purposes: relaying newly
derived information, and controlling the inference process. A
message can be used to relay the information that its origin
has been asserted or negated (an I-INFER message), that its
destination should now be asserted or negated (U-INFER),
or that its origin has either just become unasserted or is no

3u-channels and U-INFER messages were previously called y-
channels and Y-INFER messages in [Schlegel and Shapiro, 2013;
Schlegel, 2013].

longer sufficiently supported (UNASSERT). These messages
all flow forward through the graph. Other messages flow
backward through the graph controlling inference by affect-
ing the channels: BACKWARD-INFER messages open them,
and CANCEL-INFER messages close them. Messages are
defined as follows:

< orig , support , type, astatus?,finfer?, priority >

where orig is the node which produced the message; support
is the set of support which allowed the derivation producing
the message (for ATMS-style belief revision [de Kleer, 1986;
Martins and Shapiro, 1988]); type is the type of the message
(such as I-INFER or BACKWARD-INFER, described in de-
tail in the next several subsections); finfer? states whether
this message is part of a forward-inference task; astatus? is
whether the message is reporting about a newly true or newly
false node; and priority is used in scheduling the consump-
tion of messages (discussed further in Section 4).

I-INFER
I-INFER messages originate at rule nodes which have been
newly derived as either true or false, and are sent to rule
nodes in which the originating node is an antecedent. An I-
INFER message contains a support set which contains every
node used in deriving the originator of the message. These
messages optionally can be flagged as part of a forward in-
ference operation, in which case they treat any closed valves
they reach as if they were open. The priority of an I-INFER
message is one more than that of the message that caused the
change in assertional status of the originator. Section 4 will
discuss why this is important.

U-INFER
U-INFER messages originate at rule nodes which have just
learned enough about their antecedents to fire. They inform
the target node what its new assertional status is – either true
or false.4 As with I-INFER messages, U-INFER messages
contain a support set, can be flagged as being part of a forward
inference operation, and have a priority one greater than the
message that preceded it.

BACKWARD-INFER
BACKWARD-INFER messages are generated by rules which
need to infer the assertional status of some or all of their an-
tecedents in order to decide the assertional status of one or
more of its consequents. These messages set up a backward
inference operation by passing backward through channels
and opening any valves they reach. The priority of these mes-
sages is lower than any inference tasks which may take place.
This allows any messages waiting at the valves to flow for-
ward immediately and begin inferring new formulas towards
the goal of the backward inference operation.

CANCEL-INFER
Inference can be canceled either in whole by the user or
in part by a rule which determines that it no longer needs

4For example a rule representing the exclusive or of a and b
could tell b that it is true when it learns that a is false, or could tell
b that it is false when it learns that a is true.



to know the assertional status of some of its antecedents.5
CANCEL-INFER messages are sent from some node back-
ward through the graph. A node relays the message backward
if it has been initiated by the inference system itself, or if the
message has been received on all outgoing channels. These
messages cause valves to close as they pass through, and can-
cel any BACKWARD-INFER messages scheduled to re-open
those same valves, halting inference. CANCEL-INFER mes-
sages always have a priority higher than any inference tasks.

UNASSERT
Each formula which has been derived in the graph has one
or more sets of support. For a formula to remain asserted,
at least one of its support sets must have all of its formulas
asserted as well. When a formula is unasserted by a human
(or, eventually, by belief revision), a message must be sent
forward through the graph to recursively unassert any formu-
las which have the unasserted formula in each of their sup-
port sets, or is the consequent of a rule which no longer has
the appropriate number of positive or negative antecedents.
UNASSERT messages have top priority, effectively pausing
all other inference, to help protect the consistency of the
knowledge base.

3.2 Rule Node Inference
Inference operations take place in the rule nodes. When a
message arrives at a rule node the message is translated into
Rule Use Information, or RUI [Choi and Shapiro, 1992]. A
RUI is defined as:

< pos,neg ,flaggedNS , support >

where pos and neg are the number of known true (“positive”)
and negated (“negative”) antecedents of the rule, respectively;
the flaggedNS is the flagged node set, which contains a map-
ping from each antecedent with a known truth value to its
truth value, and support is the set of support, the set of for-
mulas which must be true for the assertional statuses in the
flaggedNS to hold.

All RUIs created at a node are cached. When a new one
is made, it is combined with any already existing ones – pos
and neg from the RUIs are added and the set of support and
flagged node set are combined. The output of the combina-
tion process is a set of new RUIs created since the message
arrived at the node. The pos and neg portions of the RUIs in
this set are used to determine if the rule node’s inference rules
can fire. A disadvantage of this approach is that some rules
are difficult, but not impossible, to implement, such as nega-
tion introduction and proof by cases. For us, the advantages
in capability outweigh the difficulties of implementation. If
the RUI created from a message already exists in the cache,
no work is done. This prevents re-derivations, and can cut
cycles.

Figure 3 shows the process of deriving f in our running
example. We assume backward inference has been initiated,
opening all the valves in the graph. First, in Figure 3a, mes-
sages about the truth of a, b, and c flow through i-channels to
wft1. Since wft1 is and-entailment, each of its antecedents

5We recognize that this can, in some cases, prevent the system
from deriving a contradiction automatically.

must be true for it to fire. Since they are, in Figure 3b the
message that d is true flows through wft1’s u-channel. d be-
comes asserted and reports its new status through its i-channel
(Figure 3c). In Figure 3d, wft2 receives this information,
and since it is an or-entailment rule and requires only a single
antecedent to be true for it to fire, it reports to its consequents
that they are now true, and cancels inference in e. Finally, in
Figure 3e, f is asserted, and inference is complete.
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Figure 3: a) Messages are passed from a, b, and c to wft1.
b) wft1 combines the messages from a, b, and c to find
that it has 3 positive antecedents, of a total of 3. The and-
entailment can fire, so it sends a message through its u-
channel informing its consequent, d, that it has been derived.
c) d receives the message that it is asserted and sends mes-
sages through its i-channel. d) wft2 receives the message
that d is asserted. Only one true antecedent is necessary for
or-entailment elimination, so it sends a message through its u-
channels that its consequent, f, is now derived. It also cancels
any inference in its other antecedents by sending a CANCEL-
INFER message to e. e) f is derived.



4 Concurrent Reasoning
The inference graph’s structure lends itself naturally to con-
current inference. It is clear in our running example that if
inference were required to derive a, b, and c that each of
those inference tasks could be running concurrently. After
each of a, b, and c were asserted, messages would be sent
to wft1, as in our example. The RUIs generated from the
messages would then need to be combined. Since there is
shared state (the RUI cache) we perform the combination of
RUIs synchronously using Clojure’s Software Transactional
Memory, guaranteeing we don’t “lose” results. We need not
concern ourselves with the actual order in which the RUIs are
combined, since the operation is commutative, meaning we
don’t need to maintain a queue of changes to the RUI cache.

In addition to the RUI cache, we must also update the set of
asserted formulas whenever a formula is newly derived. We
use the same technique as above for this, again recognizing
that the order in which formulas are asserted is not important.
It is possible to perform these assertions in a thread outside
of the inference task, but tests show no advantage in doing
so6, especially in the case where we have as many (or more)
inference threads as CPUs.

In order to perform inference concurrently, the inference
graph is divided into inference segments (henceforth, seg-
ments). A segment represents the inference operation – from
receipt of a message to sending new ones – which occurs in
a node. Valves delimit segments, as seen in Figure 4. When
a message passes through an open valve a new task is created
– the application of the segment’s inference function to the
message. When tasks are created they enter a global priori-
tized queue, where the priority of the task is the priority of the
message. When the task is executed, inference is performed
as described above, and any newly generated messages are
sent toward its outgoing valves for the process to repeat.

wft1!
Valve

... ...
Valve

Inference Segment

Figure 4: A single inference segment is shown in the gray
bounding box.

4.1 Scheduling Heuristics
The goal of any inference system is to infer the knowledge
requested by the user. If we arrange an inference graph so

6This can actually reduce performance by causing introduction
rules to fire more than once. Consider two I-INFER messages ar-
riving at an unasserted rule node nearly simultaneously. Assume
the first message triggers the rule’s introduction. The rule requests,
asynchronously, to be asserted, then sends appropriate messages
through the its i- and u-channels. The second message arrives, but
the node’s assertion request has not completed yet, causing duplica-
tion of work. This can happen (rarely) in the current concurrency
model, but is far more likely when it’s uncertain when the actual
assertion will occur.

that a user’s request (in backward inference) is on the right,
and channels flow from left to right wherever possible (the
graph may contain cycles), we can see this goal as trying to
get messages from the left side of the graph to the right side
of the graph. We, of course, want to do this as quickly as
possible.

Every inference operation begins processing messages
some number of levels to the left of the query node. Since
there are a limited number of tasks which can be running at
once due to hardware limitations, we must prioritize their ex-
ecution, and remove tasks which we know are no longer nec-
essary. Therefore,

1. tasks for relaying newly derived information using seg-
ments to the right are executed before those to the left,
and

2. once a node is known to be true or false, all tasks at-
tempting to derive it (left of it in the graph) are canceled,
as long as their results are not needed elsewhere.

Together, these two heuristics ensure that messages reach
the query as quickly as possible, and time is not wasted deriv-
ing unnecessary formulas. The priorities of the messages (and
hence, tasks) allow us to reach these goals. All UNASSERT
messages have the highest priority, followed by all CANCEL-
INFER messages. Then come I-INFER and U-INFER mes-
sages. BACKWARD-INFER messages have the lowest pri-
ority. As I-INFER and U-INFER messages flow to the right,
they get higher priority, but their priorities remain lower than
that of CANCEL-INFER messages. In forward inference,
I-INFER and U-INFER messages to the right in the graph
always have higher priority than those to the left, since the
messages all begin flowing from a common point. In back-
ward inference, the priorities of BACKWARD-INFER, and
I-INFER, and U-INFER messages work together to derive a
query formula as quickly as possible: since BACKWARD-
INFER messages are of the lowest priority, those I-INFER
and U-INFER messages waiting at valves which are nearest
to the query formula begin flowing forward before valves fur-
ther away are opened. This, combined with the increasing
priority of I-INFER and U-INFER messages ensure efficient
derivation. In short, the closest possible path to the query
formula is always attempted first in backward inference.

The usefulness of CANCEL-INFER can be seen if you
consider what would happen in the example in Figure 3 if
e were also asserted. Remember that the CANCEL-INFER
messages close valves in channels they passes through, and
are passed backward further when a node has received the
same number of cancellation messages as it has outgoing
channels. In this example, backward inference messages
would reach wft2, then d and e. The message that e is
asserted would flow forward through e’s i-channel to wft2,
which would in turn both send a message resulting in the as-
sertion of f, and cancel inference going on further left in the
graph, cutting off wft1’s inference since it is now unneces-
sary.

The design of the system therefore ensures that the tasks
executing at any time are the ones closest to deriving the
goal, and tasks which will not result in useful information
towards deriving the goal are cleaned up. Additionally, since



nodes “push” messages forward through the graph instead of
“pulling” from other nodes, it is not possible to have tasks
running waiting for the results of other rule nodes’ tasks.
Thus, deadlocks are impossible, and bottlenecks can only
occur when multiple threads are making additions to shared
state simultaneously.

5 Evaluation
The massively parallel logical inference systems of the 1980s
and 90s often assigned each processor a single formula or
rule to be concerned with. This resulted in limits on the
size of the KB (bounded by the number of processors), and
many processors sitting idle during any given inference pro-
cess. Our technique dynamically assigns tasks to threads only
when they have work to do, meaning that processors are not
sitting idle so long as there are as many tasks available as
there are processors.

In evaluating the performance of the inference graph, we
are mostly concerned with the speedup achieved as more pro-
cessors are used in inference. While overall processing time
is also important, if speedup is roughly linear with the number
of processors, that will show that the architecture and heuris-
tics discussed scale well. We will look at the performance
of our system in both backward and forward inference. The
other two types of inference – bi-directional inference, and
focused reasoning – are hybrids of forward and backward
inference, and have performance characteristics between the
two.

5.1 Backward Inference
To evaluate the performance of the inference graph in back-
ward inference, we generated graphs of chaining entailments.
Each entailment had bf antecedents, where bf is the branch-
ing factor, and a single consequent. Each consequent was
the consequent of exactly one rule, and each antecedent was
the consequent of another rule, up to a depth of d entailment
rules. Exactly one consequent, cq , was not the antecedent of
another rule. Therefore there were bf d entailment rules, and
2 ∗ bf d − 1 antecedents/consequents. Each of the bf d leaf
nodes were asserted. We tested the ability of the system to
backchain on and derive cq when the entailments used were
both and-entailment and or-entailment. Backward inference
is the most resource intensive type of inference the inference
graphs can perform, and most fully utilizes the scheduling
heuristics developed in this paper.

In the first test we used and-entailment, meaning for each
implication to derive its consequent both its antecedents had
to be true. Since we backchained on cq, this meant every node
in the graph would have to become asserted. This is the worst
case scenario for entailment. The timings we observed are
presented in Table 1.7

In increasing the number of usable CPUs from 1 to 2, we
achieve nearly double the performance. As we increase fur-

7All tests were performed on a Dell Poweredge 1950 server with
dual quad-core Intel Xeon X5365 processors (no Hyper-Threading)
and 32GB RAM. Each test was performed twice, with the second
result being the one used here. The first run was only to allow the
JVM to “warm up.”

CPUs Inference Time (ms) Speedup
1 37822 1.00
2 23101 1.64
4 15871 2.39
8 11818 3.20

Table 1: Inference times using 1, 2, 4, and 8 CPUs for 100
iterations of and-entailment in an inference graph with d =
10 and bf = 2 in which all 1023 rule nodes must be used to
infer the result.

ther, there is still a benefit, but the advantage begins to drop
off. The primary reason for this is that 1023 formulas must be
asserted to the KB, and this requires maintenance of shared
state. Only one thread can modify the shared state at a time,
and so we handle it synchronously (as explained in Section 4).
We found 100 iterations of asserting 1023 formulas which
had already been built, as in the case of this test, took approx-
imately 7500ms, regardless of the number of CPUs used. Ex-
cluding this from each of the times in Table 1 reveals a close-
to-halving trend every time the number of CPUs is doubled,
as would be expected (See Table 2).

CPUs Inference−Assert Time (ms) Speedup
1 30322 1.00
2 15601 1.94
4 8371 3.62
8 4318 7.02

Table 2: The results from Table 1, excluding the time
(7500ms) for assertions.

We then tried to determine whether the depth or branching
factor of the graph has any effect on speedup as the number
of processors increases. We first ran an experiment to judge
the impact of graph depth. We ran the experiment on graphs
of five different depths, ranging from 5 to 15 (32 leaves, to
32,768 leaves), while maintaining bf = 2 (see Figure 5), and
found that as graph depth is increased, speedup increases very
slowly. Since this increase must be bounded (we have no
reason to believe a more-than-doubling speedup is possible),
we have fit logarithmic trendlines to the 2, 4, and 8 CPU data,
and found R2 values to suggest a strong fit.

To find out if branching factor affects speedup, we chose
d = 7 (128 leaves, 127 rule nodes), and varied the branch-
ing factor from 1 to 4. When bf = 1, the graph is simply a
chain of nodes, and the use of more processors can provide no
possible improvement in computation time. In fact, as shown
in Figure 6, throwing more processors at the problem makes
things worse. Fortunately, this is a rather contrived use of
the inference graph. At branching factors 2-4, the graph per-
forms as expected, with the branching factor increase having
little effect on performance.8 There may be a slight perfor-
mance impact as the branching factor increases, because the
RUI computations happening in the rule nodes rely on shared

8Because of the graph size explosion as branching factor in-
creases, it was not possible to collect enough data to perform a quan-
titative analysis, only a qualitative one.
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Figure 5: Speedup of the and-entailment test, shown in re-
lation to the depth of the inference graph. As the depth of
the graph increases, speedup increases slowly but logarithmi-
cally with each number of CPUs tested. A branching factor
of 2 was used in all tests.

state, but that performance hit only occurs when two tasks at-
tempt to modify the RUI set of a single node simultaneously
– an increasingly unlikely event as we consider larger graphs.
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Figure 6: Speedup of the and-entailment test, shown in rela-
tion to the branching factor of the inference graph. A depth
of 7 was used in all tests, to keep the number of nodes rea-
sonable.

In our second test we used the same KB from the first
(d = 10, bf = 2), except each and-entailment rule was
swapped for or-entailment. Whereas the earlier test required
every consequent in the KB to be derived, this test shows the
best case of entailment - only a single leaf must be found to
be asserted to allow the chaining causing cq to become true.

The improvement in or-entailment processing times as we
add more CPUs (see Table 3) is not as dramatic since the
inference operation performed once a chain of valves from
an asserted formula to cq are open cannot be accelerated by

CPUs Time (ms) Avg. Rules Fired Speedup
1 1021 10 1.00
2 657 19 1.55
4 498 38 2.05
8 525 67 1.94

Table 3: Inference times, and number of rule nodes used, us-
ing 1, 2, 4, and 8 CPUs for 100 iterations of or-entailment in
an inference graph (d = 10, bf = 2) in which there are many
paths through the network (all of length 10) which could be
used to infer the result.

adding more processing cores – that process is inherently se-
quential. By timing forward inference through the graph, we
found that approximately 340ms in each of the times in Ta-
ble 3 is attributed to the relevant inference task. The im-
provement we see increasing from 1 to 2, and 2 to 4 CPUs
is because the BACKWARD-INFER and CANCEL-INFER
messages spread throughout the network and can be sped up
through concurrency. During the periods where backward in-
ference has already begun, and CANCEL-INFER messages
are not being sent, the extra CPUs were working on deriving
formulas relevant to the current query, but in the end unnec-
essary – as seen in the number of rule nodes fired in Table 3.
The time required to assert these extra derivations begins to
outpace the improvement gained through concurrency when
we reach 8 CPUs in this task. These extra derivations may be
used in future inference tasks, though, without re-derivation,
so the resources are not wasted. As only a chain of rules are
required, altering branching factor or depth has no effect on
speedup.

The difference in computation times between the or-
entailment and and-entailment experiments are largely due
to the scheduling heuristics described in Section 4.1. With-
out the scheduling heuristics, backward inference tasks con-
tinue to get executed even once messages start flowing for-
ward from the leaves. Additionally, more rule nodes fire than
is necessary, even in the single processor case. We ran the or-
entailment test again without these heuristics using a FIFO
queue, and found the inference took just as long as in Ta-
ble 1. We then tested a LIFO queue since it has some of the
characteristics of our prioritization scheme (see Table 4), and
found our prioritization scheme to be nearly 10x faster.

CPUs Time (ms) Avg. Rules Fired Speedup
1 12722 14 1.00
2 7327 35 1.77
4 4965 54 2.56
8 3628 103 3.51

Table 4: The same experiment as Table 3 replacing the im-
provements discussed in Section 4.1, with a LIFO queue. Our
results in Table 3 are nearly 10x faster.

5.2 Forward Inference
To evaluate the performance of the inference graph in forward
inference, we again generated graphs of chaining entailments.
Each entailment had a single antecedent, and 2 consequents.



Each consequent was the consequent of exactly one rule, and
each antecedent was the consequent of another rule, up to a
depth of 10 entailment rules. Exactly one antecedent, ant ,
the “root”, was not the consequent of another rule. There
were 1024 consequents which were not antecedents of other
rules, the leaves. We tested the ability of the system to derive
the leaves when ant was asserted with forward inference.

Since all inference in our graphs is essentially forward in-
ference (modulo additional message passing to manage the
valves), and we’re deriving every leaf node, we expect to see
similar results to the and-entailment case of backward infer-
ence, and we do, as shown in Table 5. The similarity between
these results and Table 2 shows the relatively small impact
of sending BACKWARD-INFER messages, and dealing with
the shared state in the RUIs. Excluding the assertion time as
discussed earlier, we again show a near doubling of speedup
as more processors are added to the system. In fact, altering
the branching factor and depth also result in speedups very
similar to those from Figures 5 and 6.

CPUs Inference−Assert Time (ms) Speedup
1 30548 1.00
2 15821 1.93
4 8234 3.71
8 4123 7.41

Table 5: Inference times using 1, 2, 4, and 8 CPUs for 100
iterations of forward inference in an inference graph of depth
10 and branching factor 2 in which all 1024 leaf nodes are
derived. Each result excludes 7500ms for assertions, as dis-
cussed in Section 5.1.

6 Conclusions
Inference graphs are an extension of propositional graphs ca-
pable of performing natural deduction using forward, back-
ward, bi-directional, and focused reasoning within a concur-
rent processing system. Inference graphs add channels to
propositional graphs, built along the already existing edges.
Channels carry prioritized messages through the graph for
performing and controlling inference. The priorities of mes-
sages influence the order in which tasks are executed – ensur-
ing that the inference tasks which can derive the user’s query
most quickly are executed first, and irrelevant inference tasks
are canceled. The heuristics developed in this paper for pri-
oritizing and scheduling the execution of inference tasks im-
prove performance in backward inference with or-entailment
nearly 10x over just using LIFO queues, and 20-40x over
FIFO queues. In and-entailment using backward inference,
and in forward inference, our system shows a near linear per-
formance improvement with the number of processors (ignor-
ing the intrinsically sequential portions of inference), regard-
less of the depth or branching factor of the graph.
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