
Comparing Small Graph Retrieval Performance
for Ontology Concepts in Medical Texts

Daniel R. Schlegel, Jonathan P. Bona, and Peter L. Elkin

Department of Biomedical Informatics
University at Buffalo, Buffalo NY 14260, USA

{drschleg, jpbona, elkinp}@buffalo.edu

Abstract. Some terminologies and ontologies, such as SNOMED CT,
allow for post–coordinated as well as pre-coordinated expressions. Post–
coordinated expressions are, essentially, small segments of the terminol-
ogy graphs. Compositional expressions add logical and linguistic relations
to the standard technique of post-coordination. In indexing medical text,
many instances of compositional expressions must be stored, and in per-
forming retrieval on that index, entire compositional expressions and
sub-parts of those expressions must be searched. The problem becomes
a small graph query against a large collection of small graphs. This is
further complicated by the need to also find sub-graphs from a collection
of small graphs. In previous systems using compositional expressions,
such as iNLP, the index was stored in a relational database. We compare
retrieval characteristics of relational databases, triplestores, and general
graph databases to determine which is most efficient for the task at hand.

1 Introduction

Some terminologies and ontologies, such as SNOMED CT, allow for concepts
which are post-coordinated as well as those which are pre-coordinated. Post-
coordinated concepts are, essentially, small segments of the terminology or ontol-
ogy graph. Compositional expressions (CEs) extend the idea of post-coordination,
adding logical and linguistic relations. The advantage of using CEs created from
ontologies and terminologies is that multiple linguistic surface forms for the same
concept are mapped to a single logical form (and hence, a graph structure). For
example, the following three forms, all representing the idea of hypertension
which is controlled, map to a logical form in which the SNOMED CT concept
for “hypertension” is the first argument in a binary hasModifier relation with
the SNOMED CT concept for “uncontrolled.”

1. Uncontrolled hypertension
2. HT, uncontrolled
3. Uncontrolled hypertensive disorder

It’s important to note that you cannot simply encode medical texts using
SNOMED and get similar results without CEs. In fact, 41% of clinical problems
require CEs in order to be represented properly [5].

Compositional expression graphs are quite small, generally including only a
handful of nodes and relations. For information retrieval purposes, these nodes
and relations are tagged with the document from which they are derived. We
derive CEs from text automatically using a natural language processing sys-
tem. A single document may lead to the creation of hundreds of compositional
expressions, so a large corpus results in a very large collection of small graph
CEs.

In performing information retrieval, a system must search this very large
collection of small graphs for specific instances of the query graph. The query
graph may be a subgraph of the one stored in the database and still be a match.

Previous work has measured the performance of graph databases on various
graph operations [4, 3], and traversal/retrieval of subgraphs of large graphs [13,
14, 22], but no work has been done on the problem we encounter here (retrieving
a small graph from a collection of such graphs).

In Section 2 we discuss the three types of database systems used in this study
and the sample queries. We also discuss the CE representations used, and the
formats of the queries for each database system. Our evaluation methodology
is presented in Section 3, followed by Section 4, which presents the results of
running each of the queries on each of the database systems. Finally we conclude
with Section 5.

2 Methods

Three different types of database systems will be used in this study. Represent-
ing traditional relational databases we will use Microsoft SQL Server 2014 [8]
and Oracle 11g R2 [12]. A general graph database (Neo4j 2.2.3 [10]) will be
evaluated, along with an RDF triplestore (Ontotext’s GraphDB 6.4 SE [11]).
RDF triplestores are also a kind of graph database, but tailored to a specific
representation, namely the use of RDF triples.

The information output of the NLP process which creates the CEs can be
represented as instances of fifteen logical relations, four unary, and the rest binary
(see Table 1). Some of these relations are adapted from SNOMED CT itself [18],
while others are standard logical relations, and still others have been created
in-house. The method by which these relations are represented as a graph is
presented in the respective database subsection.

Three queries have been selected for evaluation (see Figure 1). These queries
were selected because of the prevalence of results in our dataset, the likelihood
that these are real representative queries, and the ability of the queries to test
various characteristics of the database systems. Queries one and two both have
a single relation, but whereas nearly all CEs which contain the two codes in
query one are answers to that query, this is the case for only about half of those
for query two. Query three is more complex in that it uses multiple relations
conjoined. Queries two and three also have many more results than query one.

Relation Argument 1 Argument 2 Semantics

and and1 and2 and1 and and2 are True.
or or1 or2 Either or1 or or2 are True.
not not – not is False.
non non – non is False.
possible possible – possible is Possible.
exception exception – exception is an exception.
exceptionTo clause exception exception is an exception to clause.
accompaniedBy clause with clause is accompanied by with.
hasModifier modified modifier modified is modified by modifier.
hasQualifier qualified qualifier qualified is qualified by qualifier.
hasLaterality concept laterality concept has laterality laterality.

hasSpecimen measurement specimen
measurement has specimen type
specimen

hasFindingSite condition bodysite condition has finding site bodysite
hasProcedureSite procedure bodysite procedure has finding site bodysite
hasScaleType test scale test has scale type scale

Table 1. Relations used in CEs. The relation name is given, along with labels for
one or both arguments (dependent on whether the relation is unary or binary). The
semantics of each relation are provided in the last column.

In the following three subsections we discuss details of the CE representations
used for each of the respective database systems, and the nature of the queries
to be performed using each of those systems.

2.1 Relational Database

The relational database format adopted for this study is that which was pre-
viously used in iNLP [7, 6, 9]. The table containing the CEs is made up of 10
columns, as seen in Table 2. Each row contains space for a relation and two
operands (relation, operand1, and operand2, respectively), along with pedigree
data about where the source of the relation is in the text (docid, secid, and
senid). Each relation from Table 1 is mapped to a numeric identifier for use
in the relation column. The column ceid gives an identifier unique to the CE
within the document, and cerowid provides a reference to a row within a CE.
There are then two helper columns, optype1 and optype2, which indicate the
kind of thing in operand1 and operand2 respectively (either, a SNOMED CT
code, a reference to a cerowid, or null).

Table 3 shows some of the rows for the CE with ID 13 in document 102153.
In this snippet, there are three rows for SNOMED codes (cerowids 1, 3, and 5),
representing a finding of tobacco smoking behavior, pack years, and history, re-
spectively. The “1” in column optype1 indicates that these are in fact SNOMED
CT codes. The row with cerowid 3 connects the contents of cerows 1 and 3
with relation 100, which is hasModifier. The 2s in optype1 and optype2 indi-
cate that the contents of operand1 and operand2 are both cerow IDs. The row
with cerowid = 4 connects the contents of cerows 1 and 4 with relation 101,

1. Right cataract extraction

hasLaterality(< Cataract extraction (54885007) >,

< Right side (24028007) >)
2. Controlled hypertension

hasModifier(< Hypertension (38341003) >,

< Controlled (31509003) >)
3. Pack year smoking history

and(
hasModifier(< Finding of tobacco smoking behavior (365981007) >,

< Pack years (315609007) >),

hasQualifier(< Finding of tobacco smoking behavior (365981007) >,

< History of (392521001) >))

Fig. 1. Queries used in evaluation of the databases.

Column Name Description

docid Document ID
secid Record section ID
ceid ID of the CE
senid Sentence ID
cerowid ID of the row within the CE
operand1 First operand of the relation
relation The relation
operand2 Second operand of the relation
optype1 Type of thing in the operand1 cell
optype2 Type of thing in the operand2 cell

Table 2. Column descriptions of the relational database format.

docid secid ceid senid cerowid operand1 relation operand2 optype1 optype2

102153 51 13 1 1 365981007 null null 1 0
102153 51 13 1 3 315609007 null null 1 0
102153 51 13 1 2 1 100 3 2 2
102153 51 13 1 5 392521001 null null 1 0
102153 51 13 1 4 1 101 5 2 2
102153 51 13 1 6 2 0 4 2 2

Table 3. Relational database representation of a match for query three: pack year
smoking history.

which is hasQualifier. Finally, the hasModifier and hasQualifier relations
are combined in the last row with the and relation (relation 0).

Performing a query using this representation is a two-step process. First,
all CEs which contain the SNOMED CT codes for the concepts of interest are
retrieved. This query is written as follows:

SELECT a.docid, a.ceid, cerowid, operand1,

relation, operand2

FROM ce_codes as a

INNER JOIN (SELECT docid, ceid FROM ce_codes

WHERE operand1 in (codes)

GROUP BY docid, ceid

HAVING count(distinct operand1) = codes.length) b

ON

a.docid = b.docid

AND a ceid = b.ceid

ORDER BY a.docid, a.ceid

where codes is the list of SNOMED CT codes of interest.1 Then, each candidate
CE structure must be verified against the query. We have written code to verify
the structure of the retrieved CE in parallel with that of the user query.

As mentioned previously, the relational database systems used in this project
are Microsoft SQL Server 2014 and Oracle 11g R2. These were chosen since they
are large, enterprise-grade database systems, and previous experimentation by
the iNLP group showed that queries of the type discussed here executed much
more quickly on these than other database systems.

2.2 General Graph Database

There are many graph database solutions available, each with somewhat different
capabilities [2]. We chose Neo4j because of its relatively recent rise in popularity,
and benchmarks which show that it has both very good performance and scales
well to large datasets. It’s worth mentioning that Neo4j is also very good at some
graph operations which may be useful in practice, such as path matching.

1 Appropriate table indexes were created to speed execution as much as possible.

 Relation
relation: hasModi�er
doc_id: 102153
sec_id: 51
ce_id: 13
sen_id: 1

 Relation
relation: hasQuali�er
doc_id: 102153
sec_id: 51
ce_id: 13
sen_id: 1

 Code
value: 315609007
doc_id: 102153
sec_id: 51
ce_id: 13
sen_id: 1

 Code
value: 392521001
doc_id: 102153
sec_id: 51
ce_id: 13
sen_id: 1

 Code
value: 365981007
doc_id: 102153
sec_id: 51
ce_id: 13
sen_id: 1

Modi�es Quali�
es

M
od

i�
er

Q
uali�er

 Relation
relation: and
doc_id: 102153
sec_id: 51
ce_id: 13
sen_id: 1

and and

Fig. 2. Graph database representation of a match for query three: pack year smoking
history.

In order to store CEs in Neo4j, we use a directed graph in which nodes are
used to represent both SNOMED CT concepts and the relations previously dis-
cussed. Nodes are annotated with the pedigree information discussed for the
relational database. Edges are labeled with the roles played by each argument
of the logical relation (given in columns 2 and 3 of Table 1), and are directed
from each relation to its arguments.2 One major advantage of this graph repre-
sentation is that we can easily represent a relation being an argument of another
relation without leaving the graph formalism, or relying on any “hacks”. We use
properties for many node attributes (such as pedigree information) instead of
relations only because Neo4j indexes on properties. We use two such indexes, on
relation names and code values.

In Figure 2 the same example from Table 3 is presented using the graph for-
malism defined here. The three bottom nodes have the type Code, and represent
the three SNOMED CT terms in the example. The four edges incident to those
nodes indicate the roles played by those nodes in the relations represented by
the sources of those edges. The nodes with type Relation represent relations,
such as hasModifier.

2 This is a simplified, impure, version of a propositional graph, as used in the SNePS
family [17] of knowledge representation and reasoning systems, and for which a
formal mapping is defined between logical expressions and the graph structure [16,
15].

Queries for Neo4j can be done in a single step — there is no need to verify the
graph structure after the query is complete. The query for “controlled hyperten-
sion” (Query 2) is given below, where the relation node is given the label rel,
which has two edges to nodes for codes (labeled controlled and hypertension

for readability) – one with a MODIFIER label, and one with a MODIFIES label.
The codes the edges point to are 38341003 and 31509003, respectively. These
queries, using the Cypher query system, are created using a kind of ASCII art
which is easy for users, and easy to generate programmatically.

MATCH (controlled:Code {value:38341003})

<-[:MODIFIES]-(rel:Relation)-[:MODIFIER]->

(hypertension:Code {value:31509003})

RETURN rel.docid

Neo4j also allows queries to be written entirely programmatically, using the
Java API. This is a much more involved process. The user first accesses all
nodes with a certain property value (e.g., code value), and explores outward,
first getting attached edges of a certain type, then nodes at the other end of
those edges. This process continues as necessary, allowing the user to find and
verify graph structures.

2.3 Triplestore

In addition to the general graph database system Neo4j, we have translated
the compositional expression database to an OWL/RDF representation stored
in a triplestore. An RDF (Resource Description Framework)[20][21] triplestore
is a specialized graph database designed to store RDF triples: statements each
consisting of a subject, a predicate, and an object. The Web Ontology Language
(OWL)[19] is built on RDF and extends it to support richer modeling and logical
inference. An OWL ontology consists of Classes, Individuals that are instances
of the classes, and Properties used to express relations among them. Literals
store literal data values.

Our OWL/RDF representation of the CE database uses just a few classes,
mainly to separate CEs components that correspond to codes from those that
represent relations. It contains many named individuals (one for each CE row /
entry), and several properties, discussed more below.

For each CE element (uniquely identified by a cerowid in the relational
model), we created a NamedIndividual and used OWL DataProperties to re-
late that individual to its ce id, document id, section id, etc. Relations between
CE elements are encoded as OWL ObjectProperties. Each CE element that
stands for a SNOMED code is related to that code using an AnnotationProperty.

OWL DataProperties are used to relate individuals to literals. We created
a data property called document id to relate each CE element individual to its
literal document identifier. We use similar data properties to relate each CE
element to its section id, sentence id, etc.

3925210001

section id

document id

102153

51

ce id
13

sentence id

1

LLiteral:

IIndividual:

CClass:

code

rdf:type

document id: 102153
section id: 51
ce id: 13
sent id: 1

code 3925210001

document id: 102153
section id: 51
ce id: 13
sent id: 1

relation 'has modifier'

document id: 102153
section id: 51
ce id: 13
sent id: 1

code 365981007

modifier modifies

Fig. 3. OWL/RDF representation for compositional expressions

AnnotationProperties are used to provide annotations for resources. For
instance, the annotation property rdfs:label is commonly used to associate an
individual with a readable label. We use rdfs:label and an annotation property
of our own, has code, which is used to label each CE individual that represents
a code with the corresponding code.

ObjectProperties are used to relate individuals to each other. The fact that
one CE element indicates the negation of another CE element can be represented
by relating the two with an object property – in this case one we’ve labeled not-
rel :

{ce1 not-rel ce2 }

CE binary relations are represented in the OWL/RDF version in a similar
manner to the Neo4j propositional graph. Each relation has an individual that
stands for the relation CE element, and two data properties are used to connect
it to its relata. The triples that encode the has modifier relation between two
code CE elements, cee1 and cee2, where that relation is expressed by a third
(cee3), are as follows:

{cee3 modifier cee1 }

{cee3 modifies cee2 }

Here both modifier and modifies are object properties.
Figure 3 shows the basic representation scheme. The left side depicts a small

RDF graph for a single code CE element. The individual that represents the
entry is labeled with the corresponding code as an annotation property. That
individual is an instance of the class code, which is used to easily distinguish

entries for codes from those for relations (represented with the class relation).
The edges from the individual to the rectangular boxes with literal values repre-
sent data properties that are used to connect this individual to the literal values
of its document id, section id, etc.

The right side of Figure 3 shows three boxes, each of which stands for a
single CE element subgraph like the one just described. An edge between two
boxes corresponds to a data property asserted between the two individuals at
the center of those subgraphs (i.e., the individuals for those CE elements). These
three boxes taken together with the data properties between them represent the
fact that in the document with id 102153, at the indicated section, sentence, and
so on, the entry that corresponds to code 3925210001 modifies the CE element
with code 365981007. The other CE relations, including unary relations, other
binary relations, and logical relations (and, or, etc.) are represented similarly
using object properties between individuals.

Our queries for the CE data triplestore are in the SPARQL query language,
which works by specifying triple patterns that are matched against the contents
of the RDF graph to retrieve results. The following is a SPARQL version of the
query for “controlled hypertension” (Query 2). The first few lines are used to
map the long identifiers for properties to shorter names used in the query. An
alternative would be to include the properties’ label assertions among the triples
in the query itself.

PREFIX hascode: <http://example.com/db-comparison#dbc0000455>

PREFIX modifier: <http://example.com/db-comparison#dbc0000438>

PREFIX modifies: <http://example.com/db-comparison#dbc0000437>

PREFIX docid: <http://example.com/db-comparison#dbc0000412>

select ?did

WHERE {

?rel modifies: ?c1 .

?c1 hascode: "38341003" .

?rel modifier: ?c2 .

?c2 hascode: "31509003" .

?rel docid: ?did .

}

3 Evaluation Methodology

Evaluation was performed by running each of the three queries on each of the
six database configurations under study — Microsoft SQL Server 2014, Oracle
11g R2, Neo4j with the Cypher query language, Neo4j using the Java API, and
the triplestore GraphDB. Each test was run 10 times, restarting the database
systems in between tests to remove any possibility of cached results.3 We did
use a “warmup query” for each system, using a query unrelated to this study, to

3 All tests were run on a laptop with a Core i7 4600U CPU, 16GB of RAm, and an
SSD. Evaluation code was run in a VirtualBox VM running Ubuntu 14.04.

ensure that the database was fully loaded before running our queries. Averages
of the 10 runs are reported in the next section. Significance of the differences
between the systems was ascertained using the Student’s t-test.

4 Results

We used a collection of 41,585 medical records for this study. The result of run-
ning these records through our natural language processing system was 840,184
compositional expressions. These compositional expressions were stored in each
of the three types of database systems described above. Queries were written for
each database system, designed to be fairly efficient. The relational databases
and graph database contain slightly over 9 million rows and nodes, respectively.
The triple store translation of the CE data consists of nearly 72 million triples.
The average query times for each database on each query are presented in Ta-
ble 4.

The average speed of each query using each database system and technique
was compared with all others using a Student’s t-test. We found that the differ-
ences between each system were extremely statistically significant for queries one
and three with p < .0001. On query two, Neo4j’s Cypher query engine was not
significantly different from its Java API. Also on this query, Neo4j with Cypher
was found to be faster than GraphDB with p < .05 and Neo4j with the Java
API was faster with p < .005. All other differences were extremely significant,
with p < .0001.

DB Type DB Product Query 1 Query 2 Query 3

Relational
SQL Server 2014 2434ms 2517ms 2471ms
Oracle 11g R2 1904ms 2229ms 3037ms

Graph
Neo4j (Cypher) 287ms 272ms 729ms
Neo4j (Java API) 105ms 263ms 128ms

Triplestore Ontotext GraphDB 49ms 339ms 206ms
Table 4. Average execution time over 10 runs of each query on each of the database
systems under consideration.

It appears that the query time for Microsoft SQL Server is fairly stable,
regardless of the number of results or number of codes used in the query. This
suggests that the query time is largely dependent on the size of the database,
and not on the number of query results. Oracle, on the other hand, seems more
sensitive to the number of codes being queried (but, this is obviously a small
sample). The complexity of the CE graph to be verified did not appear to play
a big part – this is implemented as fairly efficient Java code and occupies an
extremely small percentage of the processing time. In Table 5, the number of
CEs returned by the query (column 2) is presented, along with the number
of CEs which were verified (column 3), and the number of unique documents
matched.

Query Query CEs Verified CEs Unique Docs

1 13 12 10
2 107 58 54
3 107 76 74

Table 5. The number of CEs returned by each relational query, along with the number
which were verified to be instances of the query graph, and the number of unique
documents the CEs come from.

The time for execution of the queries using Neo4j’s Cypher query engine
do suggest that the query complexity (i.e., the complexity of the graph being
matched) has some effect on query time. The sample size is rather small here,
so more investigation will be needed to determine the exact variables at fault
for increased query time. What we can say here, though, is that queries of the
complexity of those examined here execute much faster with Neo4j than with
either relational database system.

We have also explored writing Neo4j queries programmatically using the Java
API instead of using the Cypher query engine. As others have found (e.g., [1]),
this usually is even faster than using Cypher. The disadvantage to this approach
is that there is a need to understand the data in great detail. Whereas Cypher
is able to use cost analysis to determine which order to perform query segments,
such facilities are not readily available from the Java API. It is possibly for this
reason that query 2 is slower using the Java API than using Cypher.

As with Neo4j, the triplestore queries are fast enough that they are certainly
acceptable for any imagined use of the system. Both Neo4j and GraphDB claim
to scale to billions of entries, but we did not assess how well either would scale
to handle much larger data sets for this application.

Both Neo4j and triplestores fare well in straightforward matching of sub-
graphs in the query comparison, but it’s worth noting that these systems have
potential advantages, not realized here, which are dependent on the specific ap-
plication. Neo4j allows for queries involving paths in the graph, allowing some
types of reasoning to be performed very quickly. It also allows for graph opera-
tions such as shortest-path. With triplestores, the availability of logical reasoners
for OWL — including the powerful inference capabilities built into Ontotext’s
GraphDB — creates the potential for much more interesting queries than exam-
ined here.

As a very simple example, we might want to query for CEs that are about
not just one particular SNOMED code, but that code and all of its sub-concepts.
Both Neo4j and GraphDB have ways of doing this. In GraphDB, one could load
SNOMED into the triple store, establishing connections between SNOMED con-
cepts and the CEs that use them, and testing queries that require reasoning
about relations between concepts and between concepts and CEs. Such func-
tionality could also be achieved using Neo4j’s ability to efficiently follow paths
in a graph, or by using a reasoner external to the CE data store.

None of the database systems here have been configured to any great extent
for the fastest query processing possible. On the relational databases we created
appropriate indexes, but didn’t evaluate options such as alternate views of the
data or stored procedures. With Neo4j we didn’t attempt to use any of the
available toolkits which lie atop the Java API to do fast querying. GraphDB
provides a variety of configuration parameters that can be adjusted to affect
performance for different kinds and amounts of data. We did not utilize these
options in our comparison. The triplestore version of the CE data currently uses
string literals to store values that could be stored as numeric literals. A slight
performance increase might be obtained by a version that uses numeric literals
for this instead.

With all of these systems, it is unknown how query speed scales as query
size/complexity increases. While returning more data from a query could affect
the performance of queries in RDBs and neo4j, it could be the case that this has
a slightly larger effect on triplestore because it would be required to match more
triples in order to retrieve additional properties associated with a particular
resource. In the absence of tests with such queries, we have no reason to suspect
that this would significantly affect the running time.

5 Conclusion

Fourty-one percent of clinical problems require post-coordinated CEs to repre-
sent their knowledge. For information retrieval purposes, medical texts which
have been coded using CEs must be stored in some sort of database. Tradi-
tionally, relational databases would be used for this task. We have found that
graph databases — both general and RDF triplestores — outperformed rela-
tional databases by a factor of up to fifty over the queries. On average, the graph
database Neo4j was 5.7x faster than relational databases when using the Cypher
query engine, and 16.1x faster when using the Java API. Our chosen triplestore,
GraphDB, averaged 20.6x faster than relational databases. These performance
issues can make the difference between a practical and an impractical solution.

References

1. Andrš, J.: Metadata repository benchmark: PostgreSQL vs. Neo4j (2014), http:
//mantatools.com/metadata-repository-benchmark-postgresql-vs-neo4j

2. Angles, R.: A comparison of current graph database models. In: Data Engineering
Workshops (ICDEW), 2012 IEEE 28th International Conference on. pp. 171–177.
IEEE (2012)

3. Ciglan, M., Averbuch, A., Hluchy, L.: Benchmarking traversal operations over
graph databases. In: Data Engineering Workshops (ICDEW), 2012 IEEE 28th
International Conference on. pp. 186–189. IEEE (2012)

4. Dominguez-Sal, D., Urbón-Bayes, P., Giménez-Vañó, A., Gómez-Villamor, S.,
Mart́ınez-Bazan, N., Larriba-Pey, J.L.: Survey of graph database performance on
the hpc scalable graph analysis benchmark. In: Web-Age Information Management,
pp. 37–48. Springer (2010)

5. Elkin, P.L., Brown, S.H., Husser, C.S., Bauer, B.A., Wahner-Roedler, D., Rosen-
bloom, S.T., Speroff, T.: Evaluation of the content coverage of snomed ct: ability
of SNOMED clinical terms to represent clinical problem lists. In: Mayo Clinic
Proceedings. vol. 81, pp. 741–748. Elsevier (2006)

6. Elkin, P.L., Froehling, D.A., Wahner-Roedler, D.L., Brown, S.H., Bailey, K.R.:
Comparison of natural language processing biosurveillance methods for identifying
influenza from encounter notes. Annals of Internal Medicine 156(1 Part 1), 11–18
(2012)

7. Elkin, P.L., Trusko, B.E., Koppel, R., Speroff, T., Mohrer, D., Sakji, S., Gurewitz,
I., Tuttle, M., Brown, S.H.: Secondary use of clinical data. Stud Health Technol
Inform 155, 14–29 (2010)

8. Microsoft: SQL server 2014. http://www.microsoft.com/en-us/server-cloud/

products/sql-server/ (2015)
9. Murff, H.J., FitzHenry, F., Matheny, M.E., Gentry, N., Kotter, K.L., Crimin, K.,

Dittus, R.S., Rosen, A.K., Elkin, P.L., Brown, S.H., et al.: Automated identification
of postoperative complications within an electronic medical record using natural
language processing. Jama 306(8), 848–855 (2011)

10. Neo Technology, Inc.: Neo4j, the world’s leading graph database. http://neo4j.
com/ (2015)

11. Ontotext: Ontotext GraphDB. http://ontotext.com/products/

ontotext-graphdb/ (2015)
12. Oracle: Database 11g R2. http://www.oracle.com/technetwork/database/

index.html (2015)
13. Partner, J., Vukotic, A., Watt, N., Abedrabbo, T., Fox, D.: Neo4j in Action. Man-

ning Publications Company (2014)
14. Rodriguez, M.: MySQL vs. Neo4j on a large-scale graph traversal (2011), https:

//dzone.com/articles/mysql-vs-neo4j-large-scale

15. Schlegel, D.R.: Concurrent Inference Graphs. Ph.D. thesis, State University of New
York at Buffalo (2015)

16. Schlegel, D.R., Shapiro, S.C.: Visually interacting with a knowledge base using
frames, logic, and propositional graphs. In: Croitoru, M., Rudolph, S., Wilson, N.,
Howse, J., Corby, O. (eds.) Graph Structures for Knowledge Representation and
Reasoning, Lecture Notes in Artificial Intelligence 7205, pp. 188–207. Springer-
Verlag, Berlin (2012)

17. Shapiro, S.C., Rapaport, W.J.: The SNePS family. Computers & Mathematics with
Applications 23(2–5), 243–275 (January–March 1992)

18. The International Health Terminology Standards Development Organisation:
SNOMED CT technical implementation guide (July 2014)

19. W3C OWL Working Group: Owl 2 web ontology language document overview
(second edition) (2012), http://www.w3.org/TR/owl2-overview/

20. W3C RDF Working Group: Rdf 1.1 semantics (2014), http://www.w3.org/TR/

rdf11-mt/

21. W3C RDF Working Group: Rdf schema 1.1 (2014), http://www.w3.org/TR/

rdf-schema/

22. Zhao, F., Tung, A.K.: Large scale cohesive subgraphs discovery for social network
visual analysis. Proceedings of the VLDB Endowment 6(2), 85–96 (2012)

